BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 1979836)

  • 21. Derepression of certain aromatic amino acid biosynthetic enzymes of Escherichia coli K-12 by growth in Fe3+-deficient medium.
    McCray JW; Herrmann KM
    J Bacteriol; 1976 Feb; 125(2):608-15. PubMed ID: 1383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical diversity for biosynthesis of aromatic amino acids among the cyanobacteria.
    Hall GC; Flick MB; Gherna RL; Jensen RA
    J Bacteriol; 1982 Jan; 149(1):65-78. PubMed ID: 6119309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation.
    Shumilin IA; Bauerle R; Wu J; Woodard RW; Kretsinger RH
    J Mol Biol; 2004 Aug; 341(2):455-66. PubMed ID: 15276836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of isozymes upon partitioning of carbon flow and regulation of aromatic biosynthesis in prokaryotes.
    Byng GS; Jensen RA
    Isozymes Curr Top Biol Med Res; 1983; 8():115-40. PubMed ID: 6138318
    [No Abstract]   [Full Text] [Related]  

  • 25. Regulation of phospho-2-keto-3-deoxy-heptonate aldolase (DAHP synthase) and anthranilate synthase of Pseudomonas aureofaciens.
    Salcher O; Lingens F
    J Gen Microbiol; 1980 Dec; 121(2):473-6. PubMed ID: 6114983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria.
    Jensen RA; d'Amato TA; Hochstein LI
    Arch Microbiol; 1988; 148():365-71. PubMed ID: 11540103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [A prephenate dehydratase from Flavobacterium devorans stimulated by aromatic amino acids (author's transl)].
    Krauss G; Süssmuth R; Lingens F
    Hoppe Seylers Z Physiol Chem; 1980; 361(6):809-18. PubMed ID: 7399403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translocation of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase precursor into isolated chloroplasts.
    Zhao J; Weaver LM; Herrmann KM
    Planta; 2002 Nov; 216(1):180-6. PubMed ID: 12430029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Genetic control of the synthesis of enzymes of the common site for the aromatic pathway in Pseudomonas bacteria].
    Olekh ovich IN; Kotik EA; Fomichev IuK
    Genetika; 1994 Feb; 30(2):285-6. PubMed ID: 7913902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum.
    Hsu SK; Lin LL; Lo HH; Hsu WH
    Arch Microbiol; 2004 Mar; 181(3):237-44. PubMed ID: 14749915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis.
    Tzin V; Malitsky S; Aharoni A; Galili G
    Plant J; 2009 Oct; 60(1):156-67. PubMed ID: 19508381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.
    Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G
    Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.
    Nijkamp K; van Luijk N; de Bont JA; Wery J
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):170-7. PubMed ID: 15824922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative and assimilative enzyme activities in continuous cultures of the obligate methylotroph Methylobacillus flagellatum.
    Chistoserdova LV; Chistoserdov AY; Schklyar NL; Baev MV; Tsygankov YD
    Antonie Van Leeuwenhoek; 1991 Aug; 60(2):101-7. PubMed ID: 1804027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steady-state kinetics and inhibitor binding of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (tryptophan sensitive) from Escherichia coli.
    Akowski JP; Bauerle R
    Biochemistry; 1997 Dec; 36(50):15817-22. PubMed ID: 9398312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The biochemical basis for growth inhibition by L-phenylalanine in Neisseria gonorrhoeae.
    Bhatnagar RK; Berry A; Hendry AT; Jensen RA
    Mol Microbiol; 1989 Mar; 3(3):429-35. PubMed ID: 2568576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Biosynthesis of phenylalanine and tyrosine: arogenic acid, a new intermediate product].
    Lingens F; Keller E
    Naturwissenschaften; 1983 Mar; 70(3):115-8. PubMed ID: 6855918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli.
    Ding R; Liu L; Chen X; Cui Z; Zhang A; Ren D; Zhang L
    Biotechnol Lett; 2014 Oct; 36(10):2103-8. PubMed ID: 24966042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diverse enzymological patterns of phenylalanine biosynthesis in pseudomonads are conserved in parallel with deoxyribonucleic acid homology groupings.
    Whitaker RJ; Byng GS; Gherna RL; Jensen RA
    J Bacteriol; 1981 Aug; 147(2):526-34. PubMed ID: 7263614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rifamycin SV and related ansamycins.
    Chiao JS; Xia TH; Mei BG; Jin ZK; Gu WL
    Biotechnology; 1995; 28():477-98. PubMed ID: 8688635
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.