These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19798367)

  • 1. Determination of smoke plume and layer heights using scanning lidar data.
    Kovalev VA; Petkov A; Wold C; Urbanski S; Min Hao W
    Appl Opt; 2009 Oct; 48(28):5287-94. PubMed ID: 19798367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the smoke-plume heights and their dynamics with ground-based scanning lidar.
    Kovalev V; Petkov A; Wold C; Urbanski S; Hao WM
    Appl Opt; 2015 Mar; 54(8):2011-7. PubMed ID: 25968377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size.
    Uthe EE; Morley BM; Nielsen NB
    Appl Opt; 1982 Feb; 21(3):460-3. PubMed ID: 20372478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lidar monitoring of regions of intense backscatter with poorly defined boundaries.
    Kovalev VA; Petkov A; Wold C; Hao WM
    Appl Opt; 2011 Jan; 50(1):103-9. PubMed ID: 21221167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using LiDAR technology in forestry activities.
    Akay AE; Oğuz H; Karas IR; Aruga K
    Environ Monit Assess; 2009 Apr; 151(1-4):117-25. PubMed ID: 18365761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple algorithm to determine the near-edge smoke boundaries with scanning lidar.
    Kovalev VA; Newton J; Wold C; Hao WM
    Appl Opt; 2005 Mar; 44(9):1761-8. PubMed ID: 15813280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early forest-fire detection using scanning polarization lidar.
    Xian J; Xu W; Long C; Song Q; Yang S
    Appl Opt; 2020 Oct; 59(28):8638-8644. PubMed ID: 33104545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote measurement of smoke plume transmittance using lidar.
    Cook CS; Bethke GW; Conner WD
    Appl Opt; 1972 Aug; 11(8):1742-8. PubMed ID: 20119229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airborne Lidar Measurements of a Smoke Plume Produced by a Controlled Burn of Crude Oil on the Ocean.
    Ross JL; Waggoner AP; Hobbs PV; Ferek RJ
    J Air Waste Manag Assoc; 1996 Apr; 46(4):327-334. PubMed ID: 28079483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Quasi-Unsupervised Detection of Smoke Plume by LiDAR.
    Rossi R; Gelfusa M; Malizia A; Gaudio P
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct multiangle solution for poorly stratified atmospheres.
    Kovalev V; Wold C; Petkov A; Hao WM
    Appl Opt; 2012 Sep; 51(25):6139-46. PubMed ID: 22945162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing Vertical Allocation of Wildfire Smoke Emissions Using Observational Constraints From Airborne Lidar in the Western U.S.
    Ye X; Saide PE; Hair J; Fenn M; Shingler T; Soja A; Gargulinski E; Wiggins E
    J Geophys Res Atmos; 2022 Nov; 127(21):e2022JD036808. PubMed ID: 37035763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comments on "Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements".
    Whiteman DN; Venable D; Landulfo E
    Appl Opt; 2011 May; 50(15):2170-6; author reply 2177-8. PubMed ID: 21614108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.
    Aspey RA; McDermid IS; Leblanc T; Howe JW; Walsh TD
    Rev Sci Instrum; 2008 Sep; 79(9):094502. PubMed ID: 19044439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backscatter near-end solution in processing of scanning lidar data.
    Kovalev V; Wold C; Petkov A; Hao WM
    Appl Opt; 2015 Aug; 54(24):7335-41. PubMed ID: 26368770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated method for lidar determination of cloud-base height and vertical extent.
    Pal SR; Steinbrecht W; Carswell AI
    Appl Opt; 1992 Apr; 31(10):1488-94. PubMed ID: 20720782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation of empirical and statistically based smoke plume injection height parametrisations used within air quality models.
    Wilkins JL; Pouliot G; Pierce T; Soja A; Choi H; Gargulinski E; Gilliam R; Vukovich J; Landis MS
    Int J Wildland Fire; 2022 Jan; 31(2):193-211. PubMed ID: 35875325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a scanning, solar-blind, water Raman lidar.
    Eichinger WE; Cooper DI; Archuletta FL; Hof D; Holtkamp DB; Karl RR; Quick CR; Tiee J
    Appl Opt; 1994 Jun; 33(18):3923-32. PubMed ID: 20935738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of balloon-carried atmospheric motion sensors with Doppler lidar turbulence measurements.
    Harrison RG; Heath AM; Hogan RJ; Rogers GW
    Rev Sci Instrum; 2009 Feb; 80(2):026108. PubMed ID: 19256683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Atmospheric CO
    Mao J; Abshire JB; Kawa SR; Riris H; Sun X; Andela N; Kolbeck PT
    Geophys Res Lett; 2021 Aug; 48(16):e2021GL093805. PubMed ID: 35859666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.