These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19798408)

  • 1. Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing.
    Miura M; Nitta K; Matoba O
    J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2269-74. PubMed ID: 19798408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording.
    Miura M; Matoba O; Nitta K; Yoshimura T
    Appl Opt; 2007 Mar; 46(9):1460-6. PubMed ID: 17334436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage.
    Yonetani Y; Nitta K; Matoba O
    Appl Opt; 2010 Feb; 49(4):694-700. PubMed ID: 20119021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Available number of multiplexed holograms based on signal-to-noise ratio analysis in reflection-type holographic memory using three-dimensional speckle-shift multiplexing.
    Nishizaki T; Matoba O; Nitta K
    Appl Opt; 2014 Sep; 53(25):5733-9. PubMed ID: 25321370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatioangular-multiplexing scheme for dense holographic storage.
    Tao S; Song ZH; Selviah DR; Midwinter JE
    Appl Opt; 1995 Oct; 34(29):6729-37. PubMed ID: 21060528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflection-type holographic disk memory with random phase shift multiplexing.
    Matoba O; Yokohama Y; Miura M; Nitta K; Yoshimura T
    Appl Opt; 2006 May; 45(14):3270-4. PubMed ID: 16676031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of recording-erasure dynamics of storage capacity of a wavelength-multiplexed reflection-type photorefractive hologram.
    Zhou H; Zhao F; Yu FT
    Appl Opt; 1994 Jul; 33(20):4339-44. PubMed ID: 20935791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical compensation of hologram distortion avoiding interpage crosstalk on reconstructed image in angle-multiplexed holograms.
    Muroi T; Kinoshita N; Ishii N; Kamijo K; Kikuchi H; Kawata Y; Shimidzu N
    Appl Opt; 2011 Oct; 50(29):5700-9. PubMed ID: 22015364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast numerical simulation of diffraction from large volume holograms.
    Kalkum F
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2393-7. PubMed ID: 19884937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage.
    Li J; Cao L; Gu H; Tan X; He Q; Jin G
    Opt Lett; 2012 Mar; 37(5):936-8. PubMed ID: 22378444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthogonal reference pattern multiplexing for collinear holographic data storage.
    Cao L; Liu J; Li J; He Q; Jin G
    Appl Opt; 2014 Jan; 53(1):1-8. PubMed ID: 24513981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Security optical data storage in Fourier holograms.
    Su WC; Chen YW; Chen YJ; Lin SH; Wang LK
    Appl Opt; 2012 Mar; 51(9):1297-303. PubMed ID: 22441475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram.
    Nobukawa T; Nomura T
    Appl Opt; 2017 May; 56(13):F31-F36. PubMed ID: 28463296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal recording wavelength for maximum diffraction efficiency of thermal fixing in LiNbO3:Fe.
    Hou P; Zhi Y; Sun J; Liu L
    Appl Opt; 2011 Apr; 50(11):1554-9. PubMed ID: 21478928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation-Based Multiplexing of Complex Amplitude Data Pages in a Holographic Storage System Using Digital Holographic Techniques.
    Nobukawa T; Nomura T
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shift-multiplexed self-referential holographic data storage.
    Takabayashi M; Okamoto A; Eto T; Okamoto T
    Appl Opt; 2014 Jul; 53(20):4375-81. PubMed ID: 25090055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of crosstalk-free conditions for a cross-shift multiplexing method in holographic data recording.
    Horiuchi S; Fukumoto A; Yamamoto M
    Appl Opt; 2018 Sep; 57(27):7805-7810. PubMed ID: 30462045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic speckle multiplexing scheme in volume holographic data storage and its realization.
    He Q; Wang J; Wang J; Woo M; Jin G
    Opt Express; 2003 Feb; 11(4):366-70. PubMed ID: 19461743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume polarization holographic recording in thick photopolymer for optical memory.
    Lin SH; Cho SL; Chou SF; Lin JH; Lin CM; Chi S; Hsu KY
    Opt Express; 2014 Jun; 22(12):14944-57. PubMed ID: 24977588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Half-data-page insertion method for increasing recording density in angular multiplexing holographic memory.
    Kinoshita N; Muroi T; Ishii N; Kamijo K; Kikuchi H; Shimidzu N; Matoba O
    Appl Opt; 2011 Jun; 50(16):2361-9. PubMed ID: 21629314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.