These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19798424)

  • 21. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.
    Redding B; Pan YL
    Opt Lett; 2015 Jun; 40(12):2798-801. PubMed ID: 26076265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anomalous Lehmann Rotation of Achiral Nematic Liquid Crystal Droplets Trapped under Linearly Polarized Optical Tweezers.
    Kiang-Ia J; Taeudomkul R; Prajongtat P; Tin P; Pattanaporkratana A; Chattham N
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers.
    Baresch D; Thomas JL; Marchiano R
    Phys Rev Lett; 2016 Jan; 116(2):024301. PubMed ID: 26824541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam.
    Zhang Y; Suyama T; Ding B
    Opt Lett; 2010 Apr; 35(8):1281-3. PubMed ID: 20410993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A One-Sided Acoustic Trap for Cell Immobilization Using 30-MHz Array Transducer.
    Lim HG; Kim HH; Yoon C; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):167-172. PubMed ID: 31514129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic trapping of microbubbles in complex environments and controlled payload release.
    Baresch D; Garbin V
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15490-15496. PubMed ID: 32571936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A theoretical study of the feasibility of acoustical tweezers: ray acoustics approach.
    Lee J; Ha K; Shung KK
    J Acoust Soc Am; 2005 May; 117(5):3273-80. PubMed ID: 15957793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trapping of a mie sphere by acoustic pulses: effects of pulse length.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1487-97. PubMed ID: 25004516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional manipulation of single cells using surface acoustic waves.
    Guo F; Mao Z; Chen Y; Xie Z; Lata JP; Li P; Ren L; Liu J; Yang J; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1522-7. PubMed ID: 26811444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contactless microparticle control via ultrahigh frequency needle type single beam acoustic tweezers.
    Fei C; Li Y; Zhu B; Chiu CT; Chen Z; Li D; Yang Y; Kirk Shung K; Zhou Q
    Appl Phys Lett; 2016 Oct; 109(17):173509. PubMed ID: 27833173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing conical refraction optical tweezers.
    McDonald C; McDougall C; Rafailov E; McGloin D
    Opt Lett; 2014 Dec; 39(23):6691-4. PubMed ID: 25490654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam.
    Garcés-Chávez V; McGloin D; Melville H; Sibbett W; Dholakia K
    Nature; 2002 Sep; 419(6903):145-7. PubMed ID: 12226659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical trapping force combining an optical fiber probe and an AFM metallic probe.
    Liu B; Yang L; Wang Y
    Opt Express; 2011 Feb; 19(4):3703-14. PubMed ID: 21369196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accounting for polarization in the calibration of a donut beam axial optical tweezers.
    Pollari R; Milstein JN
    PLoS One; 2018; 13(2):e0193402. PubMed ID: 29474494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic Trapping Technique for Studying Calcium Response of a Suspended Breast Cancer Cell: Determination of Its Invasion Potentials.
    Youn S; Choi JW; Lee JS; Kim J; Yang IH; Chang JH; Kim HC; Hwang JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):737-746. PubMed ID: 30676954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers.
    Sheu FW; Lan TK; Lin YC; Chen S; Ay C
    Opt Express; 2010 Jul; 18(14):14724-9. PubMed ID: 20639958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.