These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 19798485)
41. Collaborative trial validation studies of real-time PCR-based GMO screening methods for detection of the bar gene and the ctp2-cp4epsps construct. Grohmann L; Brünen-Nieweler C; Nemeth A; Waiblinger HU J Agric Food Chem; 2009 Oct; 57(19):8913-20. PubMed ID: 19807158 [TBL] [Abstract][Full Text] [Related]
42. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms. Peng C; Wang P; Xu X; Wang X; Wei W; Chen X; Xu J Springerplus; 2016; 5(1):889. PubMed ID: 27386337 [TBL] [Abstract][Full Text] [Related]
43. Detection of genetically modified organisms by electrochemiluminescence PCR method. Liu J; Xing D; Shen X; Zhu D Biosens Bioelectron; 2004 Oct; 20(3):436-41. PubMed ID: 15494222 [TBL] [Abstract][Full Text] [Related]
44. Advances in molecular techniques for the detection and quantification of genetically modified organisms. Elenis DS; Kalogianni DP; Glynou K; Ioannou PC; Christopoulos TK Anal Bioanal Chem; 2008 Oct; 392(3):347-54. PubMed ID: 18239909 [TBL] [Abstract][Full Text] [Related]
45. PCR-free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy. Zhou X; Xing D; Tang Y; Chen WR PLoS One; 2009 Nov; 4(11):e8074. PubMed ID: 19956680 [TBL] [Abstract][Full Text] [Related]
46. Event-specific qualitative and quantitative polymerase chain reaction analysis for genetically modified canola T45. Yang L; Pan A; Zhang H; Guo J; Yin C; Zhang D J Agric Food Chem; 2006 Dec; 54(26):9735-40. PubMed ID: 17177494 [TBL] [Abstract][Full Text] [Related]
47. Development and evaluation of rapid screening detection methods for genetically modified crops using loop-mediated isothermal amplification. Takabatake R; Kagiya Y; Minegishi Y; Yeasmin S; Futo S; Noguchi A; Kondo K; Mano J; Kitta K Food Chem; 2018 Jun; 252():390-396. PubMed ID: 29478558 [TBL] [Abstract][Full Text] [Related]
48. Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach. Zahradnik C; Kolm C; Martzy R; Mach RL; Krska R; Farnleitner AH; Brunner K Anal Bioanal Chem; 2014 Nov; 406(27):6835-42. PubMed ID: 24880871 [TBL] [Abstract][Full Text] [Related]
49. A practical approach to screen for authorised and unauthorised genetically modified plants. Waiblinger HU; Grohmann L; Mankertz J; Engelbert D; Pietsch K Anal Bioanal Chem; 2010 Mar; 396(6):2065-72. PubMed ID: 19855963 [TBL] [Abstract][Full Text] [Related]
50. Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis. James D; Schmidt AM; Wall E; Green M; Masri S J Agric Food Chem; 2003 Sep; 51(20):5829-34. PubMed ID: 13129280 [TBL] [Abstract][Full Text] [Related]
51. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis. Fu W; Wei S; Wang C; Du Z; Zhu P; Wu X; Wu G; Zhu S Food Chem; 2017 Aug; 229():396-402. PubMed ID: 28372191 [TBL] [Abstract][Full Text] [Related]
52. Development of a general method for detection and quantification of the P35S promoter based on assessment of existing methods. Wu Y; Wang Y; Li J; Li W; Zhang L; Li Y; Li X; Li J; Zhu L; Wu G Sci Rep; 2014 Dec; 4():7358. PubMed ID: 25483893 [TBL] [Abstract][Full Text] [Related]
53. The occurrence of antibiotic resistance genes in Taq polymerases and a decontamination method applied to the detection of genetically modified crops. Perron A; Raymond P; Simard R Biotechnol Lett; 2006 Mar; 28(5):321-5. PubMed ID: 16614919 [TBL] [Abstract][Full Text] [Related]
54. Developing a matrix reference material for screening of transgenic rice. Li J; Wu Y; Li X; Wang Y; Zhang L; Li Y; Wu G Anal Bioanal Chem; 2015 Dec; 407(30):9153-63. PubMed ID: 26462921 [TBL] [Abstract][Full Text] [Related]
55. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs). Feng J; Tang S; Liu L; Kuang X; Wang X; Hu S; You S Int J Food Sci Nutr; 2015 Mar; 66(2):186-96. PubMed ID: 25582179 [TBL] [Abstract][Full Text] [Related]
56. A highly integrated system with rapid DNA extraction, recombinase polymerase amplification, and lateral flow biosensor for on-site detection of genetically modified crops. Wang X; Chen Y; Chen X; Peng C; Wang L; Xu X; Wu J; Wei W; Xu J Anal Chim Acta; 2020 May; 1109():158-168. PubMed ID: 32252899 [TBL] [Abstract][Full Text] [Related]
57. Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms. Kalogianni DP; Koraki T; Christopoulos TK; Ioannou PC Biosens Bioelectron; 2006 Jan; 21(7):1069-76. PubMed ID: 15935636 [TBL] [Abstract][Full Text] [Related]
58. Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. Germini A; Zanetti A; Salati C; Rossi S; Forré C; Schmid S; Marchelli R; Fogher C J Agric Food Chem; 2004 Jun; 52(11):3275-80. PubMed ID: 15161182 [TBL] [Abstract][Full Text] [Related]
59. A high-throughput multiplex method adapted for GMO detection. Chaouachi M; Chupeau G; Berard A; McKhann H; Romaniuk M; Giancola S; Laval V; Bertheau Y; Brunel D J Agric Food Chem; 2008 Dec; 56(24):11596-606. PubMed ID: 19053386 [TBL] [Abstract][Full Text] [Related]
60. Highly Sensitive GMO Detection Using Real-Time PCR with a Large Amount of DNA Template: Single-Laboratory Validation. Mano J; Hatano S; Nagatomi Y; Futo S; Takabatake R; Kitta K J AOAC Int; 2018 Mar; 101(2):507-514. PubMed ID: 28847345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]