BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19798715)

  • 1. Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation.
    Lienkamp K; Madkour AE; Kumar KN; Nüsslein K; Tew GN
    Chemistry; 2009 Nov; 15(43):11715-22. PubMed ID: 19798715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Doubly selective" antimicrobial polymers: how do they differentiate between bacteria?
    Lienkamp K; Kumar KN; Som A; Nüsslein K; Tew GN
    Chemistry; 2009 Nov; 15(43):11710-4. PubMed ID: 19790208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers.
    Al-Badri ZM; Som A; Lyon S; Nelson CF; Nüsslein K; Tew GN
    Biomacromolecules; 2008 Oct; 9(10):2805-10. PubMed ID: 18816096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic mimics of antimicrobial peptides--a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers.
    Lienkamp K; Tew GN
    Chemistry; 2009 Nov; 15(44):11784-800. PubMed ID: 19798714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach.
    Lienkamp K; Madkour AE; Musante A; Nelson CF; Nüsslein K; Tew GN
    J Am Chem Soc; 2008 Jul; 130(30):9836-43. PubMed ID: 18593128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long hydrophilic-and-cationic polymers: a different pathway toward preferential activity against bacterial over mammalian membranes.
    Yang X; Hu K; Hu G; Shi D; Jiang Y; Hui L; Zhu R; Xie Y; Yang L
    Biomacromolecules; 2014 Sep; 15(9):3267-77. PubMed ID: 25068991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures.
    Venkataraman S; Zhang Y; Liu L; Yang YY
    Biomaterials; 2010 Mar; 31(7):1751-6. PubMed ID: 20004014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature-inspired antimicrobial polymers--assessment of their potential for biomedical applications.
    Al-Ahmad A; Laird D; Zou P; Tomakidi P; Steinberg T; Lienkamp K
    PLoS One; 2013; 8(9):e73812. PubMed ID: 24040079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic mimics of antimicrobial peptides.
    Som A; Vemparala S; Ivanov I; Tew GN
    Biopolymers; 2008; 90(2):83-93. PubMed ID: 18314892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphiphilic poly(phenyleneethynylene)s can mimic antimicrobial peptide membrane disordering effect by membrane insertion.
    Ishitsuka Y; Arnt L; Majewski J; Frey S; Ratajczek M; Kjaer K; Tew GN; Lee KY
    J Am Chem Soc; 2006 Oct; 128(40):13123-9. PubMed ID: 17017792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphiphilic polymethacrylate derivatives as antimicrobial agents.
    Kuroda K; DeGrado WF
    J Am Chem Soc; 2005 Mar; 127(12):4128-9. PubMed ID: 15783168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides.
    Palermo EF; Kuroda K
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1605-15. PubMed ID: 20563718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds.
    Ji J; Zhang W
    J Biomed Mater Res A; 2009 Feb; 88(2):448-53. PubMed ID: 18306288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic mimics of antimicrobial peptides with immunomodulatory responses.
    Thaker HD; Som A; Ayaz F; Lui D; Pan W; Scott RW; Anguita J; Tew GN
    J Am Chem Soc; 2012 Jul; 134(27):11088-91. PubMed ID: 22697149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial and hemolytic activities of copolymers with cationic and hydrophobic groups: a comparison of block and random copolymers.
    Wang Y; Xu J; Zhang Y; Yan H; Liu K
    Macromol Biosci; 2011 Nov; 11(11):1499-504. PubMed ID: 21818858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic branched polymers as antimicrobial agents.
    Pasquier N; Keul H; Heine E; Moeller M; Angelov B; Linser S; Willumeit R
    Macromol Biosci; 2008 Oct; 8(10):903-15. PubMed ID: 18785211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial polymers as synthetic mimics of host-defense peptides.
    Kuroda K; Caputo GA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(1):49-66. PubMed ID: 23076870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin.
    Nan YH; Park KH; Park Y; Jeon YJ; Kim Y; Park IS; Hahm KS; Shin SY
    FEMS Microbiol Lett; 2009 Mar; 292(1):134-40. PubMed ID: 19191872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers.
    Palermo EF; Sovadinova I; Kuroda K
    Biomacromolecules; 2009 Nov; 10(11):3098-107. PubMed ID: 19803480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, antimicrobial activity and molecular modeling studies of novel benzofuroxan derivatives against Staphylococcus aureus.
    Jorge SD; Masunari A; Rangel-Yagui CO; Pasqualoto KF; Tavares LC
    Bioorg Med Chem; 2009 Apr; 17(8):3028-36. PubMed ID: 19324556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.