BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19798742)

  • 1. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease.
    Sayer JM; Liu F; Ishima R; Weber IT; Louis JM
    J Biol Chem; 2008 May; 283(19):13459-70. PubMed ID: 18281688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.
    Louis JM; Tözsér J; Roche J; Matúz K; Aniana A; Sayer JM
    Biochemistry; 2013 Oct; 52(43):7678-88. PubMed ID: 24079831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.
    Sayer JM; Agniswamy J; Weber IT; Louis JM
    Protein Sci; 2010 Nov; 19(11):2055-72. PubMed ID: 20737578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations.
    Chen J; Liang Z; Wang W; Yi C; Zhang S; Zhang Q
    Sci Rep; 2014 Nov; 4():6872. PubMed ID: 25362963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir.
    Hayashi H; Takamune N; Nirasawa T; Aoki M; Morishita Y; Das D; Koh Y; Ghosh AK; Misumi S; Mitsuya H
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12234-9. PubMed ID: 25092296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
    Ishima R; Torchia DA; Louis JM
    J Biol Chem; 2007 Jun; 282(23):17190-9. PubMed ID: 17412697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV-2 protease.
    Kovalevsky AY; Louis JM; Aniana A; Ghosh AK; Weber IT
    J Mol Biol; 2008 Dec; 384(1):178-92. PubMed ID: 18834890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of darunavir-resistant HIV-1 protease mutant reveal atypical binding of darunavir to wide open flaps.
    Zhang Y; Chang YC; Louis JM; Wang YF; Harrison RW; Weber IT
    ACS Chem Biol; 2014 Jun; 9(6):1351-8. PubMed ID: 24738918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of the effect of sequence variations located inside the binding pocket of HIV-1 and HIV-2 proteases.
    Triki D; Billot T; Visseaux B; Descamps D; Flatters D; Camproux AC; Regad L
    Sci Rep; 2018 Apr; 8(1):5789. PubMed ID: 29636521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of clade-specific sequence polymorphisms on HIV-1 protease activity and inhibitor resistance pathways.
    Bandaranayake RM; Kolli M; King NM; Nalivaika EA; Heroux A; Kakizawa J; Sugiura W; Schiffer CA
    J Virol; 2010 Oct; 84(19):9995-10003. PubMed ID: 20660190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between protease and reverse transcriptase dimerization in a model HIV-1 polyprotein.
    Chagas BCA; Zhou X; Guerrero M; Ilina TV; Ishima R
    Protein Sci; 2024 Jul; 33(7):e5080. PubMed ID: 38896002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The folding free-energy surface of HIV-1 protease: insights into the thermodynamic basis for resistance to inhibitors.
    Noel AF; Bilsel O; Kundu A; Wu Y; Zitzewitz JA; Matthews CR
    J Mol Biol; 2009 Apr; 387(4):1002-16. PubMed ID: 19150359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of different inhibitors with active-site aspartyl residues of HIV-1 protease and possible relevance to pepsin.
    Sayer JM; Louis JM
    Proteins; 2009 May; 75(3):556-68. PubMed ID: 18951411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease.
    Ragland DA; Nalivaika EA; Nalam MN; Prachanronarong KL; Cao H; Bandaranayake RM; Cai Y; Kurt-Yilmaz N; Schiffer CA
    J Am Chem Soc; 2014 Aug; 136(34):11956-63. PubMed ID: 25091085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of protease dimerization inhibition activity of darunavir is associated with the acquisition of resistance to darunavir by HIV-1.
    Koh Y; Aoki M; Danish ML; Aoki-Ogata H; Amano M; Das D; Shafer RW; Ghosh AK; Mitsuya H
    J Virol; 2011 Oct; 85(19):10079-89. PubMed ID: 21813613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates.
    Darke PL; Jordan SP; Hall DL; Zugay JA; Shafer JA; Kuo LC
    Biochemistry; 1994 Jan; 33(1):98-105. PubMed ID: 8286367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir.
    Liu F; Kovalevsky AY; Tie Y; Ghosh AK; Harrison RW; Weber IT
    J Mol Biol; 2008 Aug; 381(1):102-15. PubMed ID: 18597780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.