These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19798743)

  • 1. Quantitative prediction of protein-protein binding affinity with a potential of mean force considering volume correction.
    Su Y; Zhou A; Xia X; Li W; Sun Z
    Protein Sci; 2009 Dec; 18(12):2550-8. PubMed ID: 19798743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.
    Muegge I; Martin YC
    J Med Chem; 1999 Mar; 42(5):791-804. PubMed ID: 10072678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PLASS: protein-ligand affinity statistical score--a knowledge-based force-field model of interaction derived from the PDB.
    Ozrin VD; Subbotin MV; Nikitin SM
    J Comput Aided Mol Des; 2004 Apr; 18(4):261-70. PubMed ID: 15562990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution crystal structures leverage protein binding affinity predictions.
    Marillet S; Boudinot P; Cazals F
    Proteins; 2016 Jan; 84(1):9-20. PubMed ID: 26471944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces.
    Zhang S; Golbraikh A; Tropsha A
    J Med Chem; 2006 May; 49(9):2713-24. PubMed ID: 16640331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for protein-ligand binding affinity prediction and the related descriptors exploration.
    Li S; Xi L; Wang C; Li J; Lei B; Liu H; Yao X
    J Comput Chem; 2009 Apr; 30(6):900-9. PubMed ID: 18785151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved pose and affinity predictions using different protocols tailored on the basis of data availability.
    Prathipati P; Nagao C; Ahmad S; Mizuguchi K
    J Comput Aided Mol Des; 2016 Sep; 30(9):817-828. PubMed ID: 27714493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.
    Liu S; Zhang C; Zhou H; Zhou Y
    Proteins; 2004 Jul; 56(1):93-101. PubMed ID: 15162489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction.
    Velec HF; Gohlke H; Klebe G
    J Med Chem; 2005 Oct; 48(20):6296-303. PubMed ID: 16190756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of mean force for protein-protein interaction studies.
    Jiang L; Gao Y; Mao F; Liu Z; Lai L
    Proteins; 2002 Feb; 46(2):190-6. PubMed ID: 11807947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Knowledge-Based and Empirical Scoring Function for Protein-Ligand Interaction: SMoG2016.
    Debroise T; Shakhnovich EI; Chéron N
    J Chem Inf Model; 2017 Mar; 57(3):584-593. PubMed ID: 28191941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CSAR scoring challenge reveals the need for new concepts in estimating protein-ligand binding affinity.
    Novikov FN; Zeifman AA; Stroganov OV; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2011 Sep; 51(9):2090-6. PubMed ID: 21612285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified AutoDock force field for hydrated binding sites.
    Wojciechowski M
    J Mol Graph Model; 2017 Nov; 78():74-80. PubMed ID: 29054096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction.
    Cheng T; Liu Z; Wang R
    BMC Bioinformatics; 2010 Apr; 11():193. PubMed ID: 20398404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation.
    Pei J; Wang Q; Zhou J; Lai L
    Proteins; 2004 Dec; 57(4):651-64. PubMed ID: 15390269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.
    Kwon Y; Shin WH; Ko J; Lee J
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Update of the ATTRACT force field for the prediction of protein-protein binding affinity.
    Chéron JB; Zacharias M; Antonczak S; Fiorucci S
    J Comput Chem; 2017 Jun; 38(21):1887-1890. PubMed ID: 28580613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PRA-Pred: Structure-based prediction of protein-RNA binding affinity.
    Harini K; Sekijima M; Gromiha MM
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129490. PubMed ID: 38224813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.