BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19798981)

  • 1. [Study on interaction between heme-iron of myoglobin and metal ions by visible spectroscopy (I)].
    Tang Q; Zheng XF; Wang JY; Liu YY; Yuan YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1958-61. PubMed ID: 19798981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fluorescence spectroscopic study of interaction between Fe-protoporphyrin in myoglobin and Cu(II) ions].
    Feng YY; Yang H; Gu XT; Jiang HJ; Lu TH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Jun; 23(3):532-4. PubMed ID: 12953534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases.
    Zhao X; Nilges MJ; Lu Y
    Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex.
    Chance MR; Miller LM; Fischetti RF; Scheuring E; Huang WX; Sclavi B; Hai Y; Sullivan M
    Biochemistry; 1996 Jul; 35(28):9014-23. PubMed ID: 8703904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions.
    Zhao X; Yeung N; Russell BS; Garner DK; Lu Y
    J Am Chem Soc; 2006 May; 128(21):6766-7. PubMed ID: 16719438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction and characterization of a functionally linked metal ion binding site at the exposed heme edge of myoglobin.
    Hunter CL; Maurus R; Mauk MR; Lee H; Raven EL; Tong H; Nguyen N; Smith M; Brayer GD; Mauk AG
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3647-52. PubMed ID: 12644706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding properties of myoglobin reconstituted with iron porphycene: unusual O2 binding selectivity against CO binding.
    Matsuo T; Dejima H; Hirota S; Murata D; Sato H; Ikegami T; Hori H; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2004 Dec; 126(49):16007-17. PubMed ID: 15584735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and electrochemical studies of horse myoglobin in dimethyl sulfoxide.
    Li QC; Mabrouk PA
    J Biol Inorg Chem; 2003 Jan; 8(1-2):83-94. PubMed ID: 12459902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme reduction by intramolecular electron transfer in cysteine mutant myoglobin under carbon monoxide atmosphere.
    Hirota S; Azuma K; Fukuba M; Kuroiwa S; Funasaki N
    Biochemistry; 2005 Aug; 44(30):10322-7. PubMed ID: 16042409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron hemiporphycene as a functional prosthetic group for myoglobin.
    Neya S; Imai K; Hori H; Ishikawa H; Ishimori K; Okuno D; Nagatomo S; Hoshino T; Hata M; Funasaki N
    Inorg Chem; 2003 Mar; 42(5):1456-61. PubMed ID: 12611510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron paramagnetic resonance measurements of the ferrous mononuclear site of phthalate dioxygenase substituted with alternate divalent metal ions: direct evidence for ligation of two histidines in the copper(II)-reconstituted protein.
    Coulter ED; Moon N; Batie CJ; Dunham WR; Ballou DP
    Biochemistry; 1999 Aug; 38(34):11062-72. PubMed ID: 10460161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of charged versus neutral heme from gaseous holomyoglobin ions.
    Chrisman PA; Newton KA; Reid GE; Wells JM; McLuckey SA
    Rapid Commun Mass Spectrom; 2001; 15(23):2334-40. PubMed ID: 11746900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic characterization of mononitrosyl complexes in heme--nonheme diiron centers within the myoglobin scaffold (Fe(B)Mbs): relevance to denitrifying NO reductase.
    Hayashi T; Miner KD; Yeung N; Lin YW; Lu Y; Moënne-Loccoz P
    Biochemistry; 2011 Jul; 50(26):5939-47. PubMed ID: 21634416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes.
    Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM
    J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the interactional behaviour of transition metal ions with myoglobin: A detailed calorimetric, spectroscopic and light scattering analysis.
    Kaur A; Banipal PK; Banipal TS
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():236-244. PubMed ID: 27923210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific hypochlorous acid-induced oxidation of recombinant human myoglobin affects specific amino acid residues and the rate of cytochrome b5-mediated heme reduction.
    Szuchman-Sapir AJ; Pattison DI; Davies MJ; Witting PK
    Free Radic Biol Med; 2010 Jan; 48(1):35-46. PubMed ID: 19800968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal ion binding to human hemopexin.
    Mauk MR; Rosell FI; Lelj-Garolla B; Moore GR; Mauk AG
    Biochemistry; 2005 Feb; 44(6):1864-71. PubMed ID: 15697212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme protein dynamics revealed by geminate nitric oxide recombination in mutants of iron and cobalt myoglobin.
    Kholodenko Y; Gooding EA; Dou Y; Ikeda-Saito M; Hochstrasser RM
    Biochemistry; 1999 May; 38(18):5918-24. PubMed ID: 10231545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.