BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 19799422)

  • 41. Exceptional H2 saturation uptake in microporous metal-organic frameworks.
    Wong-Foy AG; Matzger AJ; Yaghi OM
    J Am Chem Soc; 2006 Mar; 128(11):3494-5. PubMed ID: 16536503
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topology.
    Klein N; Senkovska I; Baburin IA; Grünker R; Stoeck U; Schlichtenmayer M; Streppel B; Mueller U; Leoni S; Hirscher M; Kaskel S
    Chemistry; 2011 Nov; 17(46):13007-16. PubMed ID: 21956516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular screening of metal-organic frameworks for CO2 storage.
    Babarao R; Jiang J
    Langmuir; 2008 Jun; 24(12):6270-8. PubMed ID: 18484751
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High H2 uptake in Li-, Na-, K-metalated covalent organic frameworks and metal organic frameworks at 298 K.
    Mendoza-Cortés JL; Han SS; Goddard WA
    J Phys Chem A; 2012 Feb; 116(6):1621-31. PubMed ID: 22188543
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly porous 4,8-connected metal-organic frameworks: synthesis, characterization, and hydrogen uptake.
    Mihalcik DJ; Zhang T; Ma L; Lin W
    Inorg Chem; 2012 Feb; 51(4):2503-8. PubMed ID: 22224580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn).
    Kaye SS; Long JR
    J Am Chem Soc; 2005 May; 127(18):6506-7. PubMed ID: 15869251
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping.
    Xia Y; Walker GS; Grant DM; Mokaya R
    J Am Chem Soc; 2009 Nov; 131(45):16493-9. PubMed ID: 19852461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores.
    An J; Geib SJ; Rosi NL
    J Am Chem Soc; 2010 Jan; 132(1):38-9. PubMed ID: 20000664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly porous metal-organic framework sustained with 12-connected nanoscopic octahedra.
    Lu W; Yuan D; Makal TA; Wei Z; Li JR; Zhou HC
    Dalton Trans; 2013 Feb; 42(5):1708-14. PubMed ID: 23160711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Water-stable zirconium-based metal-organic framework material with high-surface area and gas-storage capacities.
    Gutov OV; Bury W; Gomez-Gualdron DA; Krungleviciute V; Fairen-Jimenez D; Mondloch JE; Sarjeant AA; Al-Juaid SS; Snurr RQ; Hupp JT; Yildirim T; Farha OK
    Chemistry; 2014 Sep; 20(39):12389-93. PubMed ID: 25123293
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isoreticular metalation of metal-organic frameworks.
    Doonan CJ; Morris W; Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(27):9492-3. PubMed ID: 19534523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis.
    Surblé S; Millange F; Serre C; Düren T; Latroche M; Bourrelly S; Llewellyn PL; Férey G
    J Am Chem Soc; 2006 Nov; 128(46):14889-96. PubMed ID: 17105299
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework.
    Bao Z; Yu L; Ren Q; Lu X; Deng S
    J Colloid Interface Sci; 2011 Jan; 353(2):549-56. PubMed ID: 20980016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2.
    Murray LJ; Dinca M; Yano J; Chavan S; Bordiga S; Brown CM; Long JR
    J Am Chem Soc; 2010 Jun; 132(23):7856-7. PubMed ID: 20481535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Three-dimensional metal-organic frameworks based on functionalized tetracarboxylate linkers: synthesis, structures, and gas sorption studies.
    Wu S; Ma L; Long LS; Zheng LS; Lin W
    Inorg Chem; 2009 Mar; 48(6):2436-42. PubMed ID: 19226169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isoreticular metal-organic polyhedral networks based on 5-connecting paddlewheel motifs.
    Chun H; Jung H; Seo J
    Inorg Chem; 2009 Mar; 48(5):2043-7. PubMed ID: 19235965
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An interpenetrated metal-organic framework and its gas storage behavior: simulation and experiment.
    Frahm D; Fischer M; Hoffmann F; Fröba M
    Inorg Chem; 2011 Nov; 50(21):11055-63. PubMed ID: 21985253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Favorable hydrogen storage properties of M(HBTC)(4,4'-bipy).3DMF (M = Ni and Co).
    Li Y; Xie L; Liu Y; Yang R; Li X
    Inorg Chem; 2008 Nov; 47(22):10372-7. PubMed ID: 18855378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.