These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 19799435)
1. AM1 parameters for the prediction of 1H and 13C NMR chemical shifts in proteins. Williams DE; Peters MB; Wang B; Roitberg AE; Merz KM J Phys Chem A; 2009 Oct; 113(43):11550-9. PubMed ID: 19799435 [TBL] [Abstract][Full Text] [Related]
2. MNDO parameters for the prediction of 19F NMR chemical shifts in biologically relevant compounds. Williams DE; Peters MB; Wang B; Merz KM J Phys Chem A; 2008 Sep; 112(37):8829-38. PubMed ID: 18722416 [TBL] [Abstract][Full Text] [Related]
3. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach. He X; Wang B; Merz KM J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540 [TBL] [Abstract][Full Text] [Related]
4. Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts. Barone G; Gomez-Paloma L; Duca D; Silvestri A; Riccio R; Bifulco G Chemistry; 2002 Jul; 8(14):3233-9. PubMed ID: 12203353 [TBL] [Abstract][Full Text] [Related]
6. A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides. Cheng F; Sun H; Zhang Y; Mukkamala D; Oldfield E J Am Chem Soc; 2005 Sep; 127(36):12544-54. PubMed ID: 16144402 [TBL] [Abstract][Full Text] [Related]
7. DFT-GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6beta-hydroxyhyoscyamine diastereoisomers. Muñoz MA; Joseph-Nathan P Magn Reson Chem; 2009 Jul; 47(7):578-84. PubMed ID: 19373852 [TBL] [Abstract][Full Text] [Related]
8. A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids. Kolehmainen E; Tuppurainen K; Lanina SA; Sievänen E; Laihia K; Boyarskiy VP; Nikiforov VA; Zhesko TE Chemosphere; 2006 Jan; 62(3):368-74. PubMed ID: 15992857 [TBL] [Abstract][Full Text] [Related]
9. Computational studies of 13C NMR chemical shifts of saccharides. Taubert S; Konschin H; Sundholm D Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565 [TBL] [Abstract][Full Text] [Related]
10. Empirical and DFT GIAO quantum-mechanical methods of (13)C chemical shifts prediction: competitors or collaborators? Elyashberg M; Blinov K; Smurnyy Y; Churanova T; Williams A Magn Reson Chem; 2010 Mar; 48(3):219-29. PubMed ID: 20108257 [TBL] [Abstract][Full Text] [Related]
11. The prediction of (1)H chemical shifts in amines: a semiempirical and ab initio investigation. Basso EA; Gauze GF; Abraham RJ Magn Reson Chem; 2007 Sep; 45(9):749-57. PubMed ID: 17640030 [TBL] [Abstract][Full Text] [Related]
12. Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products. Cimino P; Gomez-Paloma L; Duca D; Riccio R; Bifulco G Magn Reson Chem; 2004 Oct; 42 Spec no():S26-33. PubMed ID: 15366038 [TBL] [Abstract][Full Text] [Related]
13. Determination of the relative stereochemistry of flexible organic compounds by Ab initio methods: conformational analysis and Boltzmann-averaged GIAO 13C NMR chemical shifts. Barone G; Duca D; Silvestri A; Gomez-Paloma L; Riccio R; Bifulco G Chemistry; 2002 Jul; 8(14):3240-5. PubMed ID: 12203354 [TBL] [Abstract][Full Text] [Related]
14. How reliable are GIAO calculations of 1H and 13C NMR chemical shifts? A statistical analysis and empirical corrections at DFT (PBE/3z) level. Pankratyev EY; Tulyabaev AR; Khalilov LM J Comput Chem; 2011 Jul; 32(9):1993-7. PubMed ID: 21469162 [TBL] [Abstract][Full Text] [Related]
15. 1H chemical shifts in NMR. Part 20--anisotropic and steric effects in halogen substituent chemical shifts (SCS), a modelling and ab initio investigation. Abraham RJ; Mobli M; Smith RJ Magn Reson Chem; 2004 May; 42(5):436-44. PubMed ID: 15095379 [TBL] [Abstract][Full Text] [Related]
16. Theoretical investigation on 1H and 13C NMR chemical shifts of small alkanes and chloroalkanes. d'Antuono P; Botek E; Champagne B; Spassova M; Denkova P J Chem Phys; 2006 Oct; 125(14):144309. PubMed ID: 17042592 [TBL] [Abstract][Full Text] [Related]
17. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects. Standara S; Malináková K; Marek R; Marek J; Hocek M; Vaara J; Straka M Phys Chem Chem Phys; 2010 May; 12(19):5126-39. PubMed ID: 20445915 [TBL] [Abstract][Full Text] [Related]
18. An ab initio quantum chemical investigation of 43Ca NMR interaction parameters for the Ca2+ sites in organic complexes and in metalloproteins. Wong A; Laurencin D; Wu G; Dupree R; Smith ME J Phys Chem A; 2008 Oct; 112(40):9807-13. PubMed ID: 18774784 [TBL] [Abstract][Full Text] [Related]
19. A joined theoretical-experimental investigation on the 1H and 13C NMR signatures of defects in poly(vinyl chloride). d'Antuono P; Botek E; Champagne B; Wieme J; Reyniers MF; Marin GB; Adriaensens PJ; Gelan JM J Phys Chem B; 2008 Nov; 112(47):14804-18. PubMed ID: 18975894 [TBL] [Abstract][Full Text] [Related]
20. 1H chemical shifts in NMR. Part 21--prediction of the 1H chemical shifts of molecules containing the ester group: a modelling and ab initio investigation. Abraham RJ; Bardsley B; Mobli M; Smith RJ Magn Reson Chem; 2005 Jan; 43(1):3-15. PubMed ID: 15390026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]