These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli. Roehl RA; Vinopal RT J Bacteriol; 1976 May; 126(2):852-60. PubMed ID: 177406 [TBL] [Abstract][Full Text] [Related]
23. The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Roseman S Ciba Found Symp; 1975; (31):225-41. PubMed ID: 1097216 [TBL] [Abstract][Full Text] [Related]
24. Isolation and investigation of the Escherichia coli mutant with the deletion in the ptsH gene. Bolshakova TN; Dobrynina OY; Gershanovitch VN FEBS Lett; 1979 Nov; 107(1):169-72. PubMed ID: 227739 [No Abstract] [Full Text] [Related]
25. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048 [TBL] [Abstract][Full Text] [Related]
26. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli. White RJ Biochem J; 1970 Jun; 118(1):89-92. PubMed ID: 4919472 [TBL] [Abstract][Full Text] [Related]
27. [Effect of a mutational lesion to the phosphoenolpyruvate-dependent phosphotransferase system on the transport of hydrolyzable beta-galactosides in Escherichia coli K12]. Bol'shakova TN; Burd GI; Gershanovich VN Biokhimiia; 1974; 39(4):808-10. PubMed ID: 4613390 [No Abstract] [Full Text] [Related]
28. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
29. The phosphoenolpyruvate : methyl-alpha-D-glucoside phosphotransferase system in Bacillus subtilis Marburg 168 : purification and identification of the phosphocarrier protein (HPr). Marquet M; Creignou MC; Dedonder R Biochimie; 1976; 58(4):435-41. PubMed ID: 820382 [TBL] [Abstract][Full Text] [Related]
30. Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. Rephaeli AW; Saier MH J Biol Chem; 1978 Nov; 253(21):7595-7. PubMed ID: 359550 [TBL] [Abstract][Full Text] [Related]
31. Transient state kinetics of Enzyme I of the phosphoenolpyruvate:glycose phosphotransferase system of Escherichia coli: equilibrium and second-order rate constants for the phosphotransfer reactions with phosphoenolpyruvate and HPr. Meadow ND; Mattoo RL; Savtchenko RS; Roseman S Biochemistry; 2005 Sep; 44(38):12790-6. PubMed ID: 16171394 [TBL] [Abstract][Full Text] [Related]
32. Relationships between beta-galactoside transport system and phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K12. Burd GI; Bol'shakova TN; Gershanovich VN Mol Biol; 1973; 7(3):252-6. PubMed ID: 4589445 [No Abstract] [Full Text] [Related]
33. The bacterial phosphotransferase system: kinetic characterization of the glucose, mannitol, glucitol, and N-acetylglucosamine systems. Grenier FC; Waygood EB; Saier MH J Cell Biochem; 1986; 31(2):97-105. PubMed ID: 3015992 [TBL] [Abstract][Full Text] [Related]
34. Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli. Harwood JP; Gazdar C; Prasad C; Peterkofsky A; Curtis SJ; Epstein W J Biol Chem; 1976 Apr; 251(8):2462-8. PubMed ID: 177417 [TBL] [Abstract][Full Text] [Related]
35. Insulin action on Escherichia coli. Regulation of the adenylate cyclase and phosphotransferase enzymes. Abou-Sabe' M; Reilly T Biochim Biophys Acta; 1978 Sep; 542(3):442-55. PubMed ID: 356893 [TBL] [Abstract][Full Text] [Related]
36. Vectorial and nonvectorial transphosphorylation catalyzed by enzymes II of the bacterial phosphotransferase system. Saier MH; Schmidt MR J Bacteriol; 1981 Jan; 145(1):391-7. PubMed ID: 6780516 [TBL] [Abstract][Full Text] [Related]
37. [Glucose transport system and regulation of gene expression in Escherichia coli]. Gershanovich VN; Burd GI; Bol'shakov TN; Erlagayeva RS; Umiarov AM; Gadrielian TR Mikrobiologiia; 1977; 46(5):912-9. PubMed ID: 414051 [TBL] [Abstract][Full Text] [Related]
38. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli. Liu L; Chen S; Wu J J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1385-1395. PubMed ID: 28726163 [TBL] [Abstract][Full Text] [Related]
39. [The alpha-methylglucoside transport in Escherichia coli K12 cells]. Shul'gina MV; Kalacheb IIa; Burd GI Biokhimiia; 1977 Dec; 42(12):2235-45. PubMed ID: 339963 [TBL] [Abstract][Full Text] [Related]
40. Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: purification and physicochemical and immunochemical characterization of a membrane-associated enzyme I. Brouwer M; Elferink MG; Robillard GT Biochemistry; 1982 Jan; 21(1):82-8. PubMed ID: 6277369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]