These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19799639)

  • 21. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.
    Espinazo-Romeu M; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS; Moon HY; Yun HS; Jin I
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of yeast glutathione reductase by trehalose: possible implications in yeast survival and recovery from stress.
    Sebollela A; Louzada PR; Sola-Penna M; Sarone-Williams V; Coelho-Sampaio T; Ferreira ST
    Int J Biochem Cell Biol; 2004 May; 36(5):900-8. PubMed ID: 15006642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.
    Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S
    FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.
    Yoshiyama Y; Tanaka K; Yoshiyama K; Hibi M; Ogawa J; Shima J
    J Biosci Bioeng; 2015 Feb; 119(2):172-5. PubMed ID: 25060731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of trehalose during stress in a heat-shock resistant mutant of Saccharomyces cerevisiae.
    Eleutherio EC; Ribeiro MJ; Pereira MD; Maia FM; Panek AD
    Biochem Mol Biol Int; 1995 Aug; 36(6):1217-23. PubMed ID: 8535293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
    Ding J; Huang X; Zhang L; Zhao N; Yang D; Zhang K
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):253-63. PubMed ID: 19756577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A compensatory increase in trehalose synthesis in response to desiccation stress in Saccharomyces cerevisiae cells lacking the heat shock protein Hsp12p.
    Shamrock VJ; Lindsey GG
    Can J Microbiol; 2008 Jul; 54(7):559-68. PubMed ID: 18641702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu ZL
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic microbial response under ethanol stress to monitor Saccharomyces cerevisiae activity in different initial physiological states.
    Sanchez-Gonzalez Y; Cameleyre X; Molina-Jouve C; Goma G; Alfenore S
    Bioprocess Biosyst Eng; 2009 Jun; 32(4):459-66. PubMed ID: 18923846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose.
    Divate NR; Chen GH; Wang PM; Ou BR; Chung YC
    Bioengineered; 2016 Nov; 7(6):445-458. PubMed ID: 27484300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach.
    Kronberg MF; Nikel PI; Cerrutti P; Galvagno MA
    J Appl Microbiol; 2008 Mar; 104(3):716-27. PubMed ID: 17927744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations.
    Devantier R; Scheithauer B; Villas-Bôas SG; Pedersen S; Olsson L
    Biotechnol Bioeng; 2005 Jun; 90(6):703-14. PubMed ID: 15812801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase.
    van Vaeck C; Wera S; van Dijck P; Thevelein JM
    Biochem J; 2001 Jan; 353(Pt 1):157-162. PubMed ID: 11115409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses.
    Kaino T; Takagi H
    Appl Microbiol Biotechnol; 2008 May; 79(2):273-83. PubMed ID: 18351334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of trehalose on the fermentation performance of aged cells of Saccharomyces cerevisiae.
    Trevisol ET; Panek AD; Mannarino SC; Eleutherio EC
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):697-704. PubMed ID: 21243352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification.
    Luhe AL; Tan L; Wu J; Zhao H
    Biotechnol Lett; 2011 May; 33(5):1007-11. PubMed ID: 21246255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protective role of trehalose during heat stress in Saccharomyces cerevisiae.
    Eleutherio EC; Araujo PS; Panek AD
    Cryobiology; 1993 Dec; 30(6):591-6. PubMed ID: 8306706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Cloning of the promoter region of the trehalose-6-phosphate synthase gene TPS1 of the self-flocculating yeast and exploration of the promoter activity on ethanol stress].
    Lin B; Zhao X; Zhang Q; Ma L; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):1014-8. PubMed ID: 20954405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.