BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19799782)

  • 21. Flow studies in canine artery bifurcations using a numerical simulation method.
    Xu XY; Collins MW; Jones CJ
    J Biomech Eng; 1992 Nov; 114(4):504-11. PubMed ID: 1487903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncertainty quantification of the lattice Boltzmann method focussing on studies of human-scale vascular blood flow.
    McCullough JWS; Coveney PV
    Sci Rep; 2024 May; 14(1):11317. PubMed ID: 38760455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study.
    Mirzaee H; Henn T; Krause MJ; Goubergrits L; Schumann C; Neugebauer M; Kuehne T; Preusser T; Hennemuth A
    J Magn Reson Imaging; 2017 Jan; 45(1):139-146. PubMed ID: 27384018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of exercise on hemodynamic conditions in the abdominal aorta.
    Taylor CA; Hughes TJ; Zarins CK
    J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetohydrodynamic blood flow study in stenotic coronary artery using lattice Boltzmann method.
    Cherkaoui I; Bettaibi S; Barkaoui A; Kuznik F
    Comput Methods Programs Biomed; 2022 Jun; 221():106850. PubMed ID: 35567865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T; Rodgers VG; Frazin LJ; Chandran KB
    J Biomech; 2000 Jun; 33(6):717-28. PubMed ID: 10807993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of the lattice Boltzmann method to arterial flow simulation: investigation of boundary conditions for complex arterial geometries.
    Boyd J; Buick JM; Cosgrove JA; Stansell P
    Australas Phys Eng Sci Med; 2004 Dec; 27(4):207-12. PubMed ID: 15712588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstruction of blood flow patterns in human arteries.
    Xu XY; Long Q; Collins MW; Bourne M; Griffith TM
    Proc Inst Mech Eng H; 1999; 213(5):411-21. PubMed ID: 10581968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer simulation of convective diffusion processes in large arteries.
    Rappitsch G; Perktold K
    J Biomech; 1996 Feb; 29(2):207-15. PubMed ID: 8849814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems.
    Casulli V; Dumbser M; Toro EF
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):257-72. PubMed ID: 25099329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First-order system least-squares (FOSLS) for modeling blood flow.
    Heys JJ; DeGroff CG; Manteuffel TA; McCormick SF
    Med Eng Phys; 2006 Jul; 28(6):495-503. PubMed ID: 16275152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy loss and coronary flow simulation following hybrid stage I palliation: a hypoplastic left heart computational fluid dynamic model.
    Shuhaiber JH; Niehaus J; Gottliebson W; Abdallah S
    Interact Cardiovasc Thorac Surg; 2013 Aug; 17(2):308-13. PubMed ID: 23660734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions.
    Finol EA; Keyhani K; Amon CH
    J Biomech Eng; 2003 Apr; 125(2):207-17. PubMed ID: 12751282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - II. Abdominal aorta.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):257-74. PubMed ID: 25281597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blood flow in the cerebral venous system: modeling and simulation.
    Miraucourt O; Salmon S; Szopos M; Thiriet M
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):471-482. PubMed ID: 27802781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An efficient, localised approach for the simulation of elastic blood vessels using the lattice Boltzmann method.
    McCullough JWS; Coveney PV
    Sci Rep; 2021 Dec; 11(1):24260. PubMed ID: 34930939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging.
    Cebral JR; Yim PJ; Löhner R; Soto O; Choyke PL
    Acad Radiol; 2002 Nov; 9(11):1286-99. PubMed ID: 12449361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.