These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19799782)

  • 41. A fast alternative to computational fluid dynamics for high quality imaging of blood flow.
    McGregor RH; Szczerbal D; Muralidhar K; Székely G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):124-31. PubMed ID: 20425979
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient parallel simulation of hemodynamics in patient-specific abdominal aorta with aneurysm.
    Qin S; Wu B; Liu J; Shiu WS; Yan Z; Chen R; Cai XC
    Comput Biol Med; 2021 Sep; 136():104652. PubMed ID: 34329862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.
    Abas A; Mokhtar NH; Ishak MH; Abdullah MZ; Ho Tian A
    Comput Math Methods Med; 2016; 2016():6143126. PubMed ID: 27239221
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time intravascular shear stress in the rabbit abdominal aorta.
    Ai L; Yu H; Dai W; Hale SL; Kloner RA; Hsiai TK
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1755-64. PubMed ID: 19527952
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study.
    Wang H; Krüger T; Varnik F
    PLoS One; 2020; 15(1):e0227770. PubMed ID: 31945111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical analysis of blood flow in the abdominal aorta under simulated weightlessness and earth conditions.
    Żyłka M; Górski G; Żyłka W; Gala-Błądzińska A
    Sci Rep; 2024 Jul; 14(1):15978. PubMed ID: 38987416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Modeling of Blood Flow in Simulated Abdominal Aortic Aneurysm.
    Gonzalez-Urquijo M; de Zamacona RG; Mendoza AKM; Iribarren MZ; Ibarra EG; Bencomo MDM; Fabiani MA
    Vasc Endovascular Surg; 2021 Oct; 55(7):677-683. PubMed ID: 33902355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling 3-D compliant blood flow with FOSLS.
    Heys JJ; DeGroff C; Manteuffel T; McCormick S; Tufo H
    Biomed Sci Instrum; 2004; 40():193-9. PubMed ID: 15133957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments.
    Ge L; Leo HL; Sotiropoulos F; Yoganathan AP
    J Biomech Eng; 2005 Oct; 127(5):782-97. PubMed ID: 16248308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct numerical simulation of a 2D-stented aortic heart valve at physiological flow rates.
    Dimakopoulos Y; Bogaerds AC; Anderson PD; Hulsen MA; Baaijens FP
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1157-79. PubMed ID: 22185614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation on aortic hemodynamics based on physics-informed neural network.
    Du M; Zhang C; Xie S; Pu F; Zhang D; Li D
    Math Biosci Eng; 2023 May; 20(7):11545-11567. PubMed ID: 37501408
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spectral models for 1D blood flow simulations.
    Tamburrelli V; Ferranti F; Antonini G; Cristina S; Dhaene T; Knockaert L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2598-601. PubMed ID: 21096178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Finite-volume lattice Boltzmann method.
    Xi H; Peng G; Chou SH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):6202-5. PubMed ID: 11969609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of aortic repair based on flow field computer simulation within the thoracic aorta.
    Filipovic N; Milasinovic D; Zdravkovic N; Böckler D; von Tengg-Kobligk H
    Comput Methods Programs Biomed; 2011 Mar; 101(3):243-52. PubMed ID: 21316789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blood flow in a compliant vessel by the immersed boundary method.
    Kim Y; Lim S; Raman SV; Simonetti OP; Friedman A
    Ann Biomed Eng; 2009 May; 37(5):927-42. PubMed ID: 19283479
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro validation of finite element analysis of blood flow in deformable models.
    Kung EO; Les AS; Figueroa CA; Medina F; Arcaute K; Wicker RB; McConnell MV; Taylor CA
    Ann Biomed Eng; 2011 Jul; 39(7):1947-60. PubMed ID: 21404126
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Validation of the coupling of magnetic resonance imaging velocity measurements with computational fluid dynamics in a U bend.
    Glor FP; Westenberg JJ; Vierendeels J; Danilouchkine M; Verdonck P
    Artif Organs; 2002 Jul; 26(7):622-35. PubMed ID: 12081521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.