These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 198002)

  • 1. Selenaproline and protein synthesis.
    De Marco C; Busiello V; Di Girolamo M; Cavallini D
    Biochim Biophys Acta; 1977 Sep; 478(2):156-66. PubMed ID: 198002
    [No Abstract]   [Full Text] [Related]  

  • 2. Beta-selenaproline as competitive inhibitor of proline activation.
    Busiello V; Di Girolamo M; Cini C; de Marco C
    Biochim Biophys Acta; 1980 Feb; 606(2):347-52. PubMed ID: 6243985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiaisoleucine and protein synthesis.
    Busiello V; Di Girolamo M; De Marco C
    Biochim Biophys Acta; 1979 Jan; 561(1):206-14. PubMed ID: 217436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action of thiazolidine-2-carboxylic acid, a proline analog, on protein synthesizing systems.
    Busiello V; di Girolamo M; Cini C; De Marco C
    Biochim Biophys Acta; 1979 Sep; 564(2):311-21. PubMed ID: 385056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenalysine and protein synthesis.
    De Marco C; Busiello V; Di Girolamo M; Cavallini D
    Biochim Biophys Acta; 1976 Dec; 454(2):298-308. PubMed ID: 187234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. Evidence for a two-step aminoacylation pathway, and study of the reactivity of the intermediate complex.
    Kern D; Lapointe J
    Eur J Biochem; 1980 May; 106(1):137-50. PubMed ID: 6280993
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of rat liver and Escherichia Coli cell-free systems in inhibition of polypeptide synthesis by deoxycholate.
    Igarashi K; Kurosawa R; Terada K; Takahashi K; Hirose S
    Biochim Biophys Acta; 1973 Mar; 299(2):331-6. PubMed ID: 4574764
    [No Abstract]   [Full Text] [Related]  

  • 8. Aminoacyl-tRNA synthetases: sone recent results and achievements.
    Kisselev LL; Favorova OO
    Adv Enzymol Relat Areas Mol Biol; 1974; 40(0):141-238. PubMed ID: 4365538
    [No Abstract]   [Full Text] [Related]  

  • 9. [Association of eukaryotic aminoacyl-tRNA-synthases with polyribosomes].
    Fedorov AN; Al'zhanova AT; Ovchinnikov LP
    Biokhimiia; 1985 Oct; 50(10):1639-45. PubMed ID: 4074774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophanyl-tRNA synthetase: evidence for an anhydrous bond involved in the tryptophanyl enzyme formation.
    Kovaleva GK; Moroz SG; Favorova OO; Kisselev LL
    FEBS Lett; 1978 Nov; 95(1):81-4. PubMed ID: 31302
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy expenditure in the editing mechanism of protein synthesis [proceedings].
    Mulvey RS; Fersht AR
    Biochem Soc Trans; 1977; 5(3):672-5. PubMed ID: 332559
    [No Abstract]   [Full Text] [Related]  

  • 12. Perspectives: protein synthesis. Unraveling the riddle of ProCys tRNA synthetase.
    Yarus M
    Science; 2000 Jan; 287(5452):440-1. PubMed ID: 10671174
    [No Abstract]   [Full Text] [Related]  

  • 13. Protein biosynthesis in a homologous, cell-free system in the presence of chick embryo RNA isolated from free and membrane-bound polyribosomes.
    Kogan GL; Mazurov VI
    Mol Biol; 1975 Jan; 8(4):486-93. PubMed ID: 165398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic equations for ATP--pyrophosphate exchange catalyzed by aminoacyl-tRNA synthetase.
    Knorre DG; Malygin EG
    Mol Biol; 1971; 5(3):287-90. PubMed ID: 4343100
    [No Abstract]   [Full Text] [Related]  

  • 15. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation.
    Seno T; Agris PF; Söll D
    Biochim Biophys Acta; 1974 May; 349(3):328-38. PubMed ID: 4366808
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetic scheme and kinetic parameters of the exchange of ATP-32P-pyrophosphates, catalyzed by tryptophanyl-tRNA synthetase from beef pancreas.
    Zinov'ev VV; Kiselev LL; Knorre DG; Kochkina LL; Malygin EG; Slin'ko MG; Timoshenko VI; Favorova OO
    Mol Biol; 1974 Nov; 8(3):303-10. PubMed ID: 4373648
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of aminoacyl-transfer RNA formation by low-molecular substances from melanoma extract.
    Ishikawa K; Ohno T; Numazaki M; Tsutsumi K; Suzuki J; Hariu A; Tomita Y; Kato T; Seiji M
    Gan; 1984 Jan; 75(1):43-52. PubMed ID: 6327450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased protein synthesis by polysomes, tRNA and aminoacyl-tRNA synthetases isolated from senescent rat liver.
    Cook JR; Buetow DE
    Mech Ageing Dev; 1981 Sep; 17(1):41-52. PubMed ID: 7311618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits.
    Graf H
    Biochim Biophys Acta; 1976 Mar; 425(2):175-84. PubMed ID: 1252498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The formation of ATP from adenosine 5'-phosphoroimidazolide and pyrophosphate catalyzed by valyl-tRNA-synthetase].
    Biriukov AI; Osipova TI; Khomutov RM
    Biokhimiia; 1976 Oct; 41(10):1905-6. PubMed ID: 192333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.