BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19800577)

  • 61. Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53, and Rb genes in primary lymphoid malignancies.
    Hangaishi A; Ogawa S; Imamura N; Miyawaki S; Miura Y; Uike N; Shimazaki C; Emi N; Takeyama K; Hirosawa S; Kamada N; Kobayashi Y; Takemoto Y; Kitani T; Toyama K; Ohtake S; Yazaki Y; Ueda R; Hirai H
    Blood; 1996 Jun; 87(12):4949-58. PubMed ID: 8652807
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Antioxidant α-tocopherol checks lymphoma promotion via regulation of expression of protein kinase C-α and c-Myc genes and glycolytic metabolism.
    Sharma R; Vinayak M
    Leuk Lymphoma; 2012 Jun; 53(6):1203-10. PubMed ID: 22132835
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia.
    Mavrakis KJ; Wolfe AL; Oricchio E; Palomero T; de Keersmaecker K; McJunkin K; Zuber J; James T; Khan AA; Leslie CS; Parker JS; Paddison PJ; Tam W; Ferrando A; Wendel HG
    Nat Cell Biol; 2010 Apr; 12(4):372-9. PubMed ID: 20190740
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma.
    Amaravadi RK; Yu D; Lum JJ; Bui T; Christophorou MA; Evan GI; Thomas-Tikhonenko A; Thompson CB
    J Clin Invest; 2007 Feb; 117(2):326-36. PubMed ID: 17235397
    [TBL] [Abstract][Full Text] [Related]  

  • 65. B cell activator PAX5 promotes lymphomagenesis through stimulation of B cell receptor signaling.
    Cozma D; Yu D; Hodawadekar S; Azvolinsky A; Grande S; Tobias JW; Metzgar MH; Paterson J; Erikson J; Marafioti T; Monroe JG; Atchison ML; Thomas-Tikhonenko A
    J Clin Invest; 2007 Sep; 117(9):2602-10. PubMed ID: 17717600
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor.
    Iorns E; Ward TM; Dean S; Jegg A; Thomas D; Murugaesu N; Sims D; Mitsopoulos C; Fenwick K; Kozarewa I; Naceur-Lombarelli C; Zvelebil M; Isacke CM; Lord CJ; Ashworth A; Hnatyszyn HJ; Pegram M; Lippman M
    Breast Cancer Res Treat; 2012 Aug; 135(1):79-91. PubMed ID: 22535017
    [TBL] [Abstract][Full Text] [Related]  

  • 67. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway.
    Chung MT; Lai HC; Sytwu HK; Yan MD; Shih YL; Chang CC; Yu MH; Liu HS; Chu DW; Lin YW
    Gynecol Oncol; 2009 Mar; 112(3):646-53. PubMed ID: 19095296
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mouse induced glioma-initiating cell models and therapeutic targets.
    Kondo T
    Anticancer Agents Med Chem; 2010 Jul; 10(6):471-80. PubMed ID: 20879984
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Expression profiling reveals transcriptional regulation by Fbxw7/mTOR pathway in radiation-induced mouse thymic lymphomas.
    Snijders AM; Liu Y; Su L; Huang Y; Mao JH
    Oncotarget; 2015 Dec; 6(42):44794-805. PubMed ID: 26575021
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Knockdown of Slit2 promotes growth and motility in gastric cancer cells via activation of AKT/β-catenin.
    Shi R; Yang Z; Liu W; Liu B; Xu Z; Zhang Z
    Oncol Rep; 2014 Feb; 31(2):812-8. PubMed ID: 24297051
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A tumour suppressor network relying on the polyamine-hypusine axis.
    Scuoppo C; Miething C; Lindqvist L; Reyes J; Ruse C; Appelmann I; Yoon S; Krasnitz A; Teruya-Feldstein J; Pappin D; Pelletier J; Lowe SW
    Nature; 2012 Jul; 487(7406):244-8. PubMed ID: 22722845
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Expansion of the hematopoietic stem cell compartment is necessary but not sufficient for gain-of-function mutant p53 R248Q to accelerate lymphomagenesis.
    Yallowitz AR; Hanel W; Moll UM
    Cell Death Differ; 2015 Aug; 22(8):1397. PubMed ID: 26045050
    [No Abstract]   [Full Text] [Related]  

  • 73. Finding the shape-shifter genes.
    Olson MF
    Nat Cell Biol; 2013 Jul; 15(7):723-5. PubMed ID: 23817235
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Predicting cell shapes in melanomas.
    Tyrrell BJ; Neilson M; Insall RH; Machesky LM
    Pigment Cell Melanoma Res; 2014 Jan; 27(1):5-6. PubMed ID: 24118871
    [No Abstract]   [Full Text] [Related]  

  • 75. A rapid and scalable system for studying gene function in mice using conditional RNA interference.
    Premsrirut PK; Dow LE; Kim SY; Camiolo M; Malone CD; Miething C; Scuoppo C; Zuber J; Dickins RA; Kogan SC; Shroyer KR; Sordella R; Hannon GJ; Lowe SW
    Cell; 2011 Apr; 145(1):145-58. PubMed ID: 21458673
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration.
    Wuestefeld T; Pesic M; Rudalska R; Dauch D; Longerich T; Kang TW; Yevsa T; Heinzmann F; Hoenicke L; Hohmeyer A; Potapova A; Rittelmeier I; Jarek M; Geffers R; Scharfe M; Klawonn F; Schirmacher P; Malek NP; Ott M; Nordheim A; Vogel A; Manns MP; Zender L
    Cell; 2013 Apr; 153(2):389-401. PubMed ID: 23582328
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas.
    Schramek D; Sendoel A; Segal JP; Beronja S; Heller E; Oristian D; Reva B; Fuchs E
    Science; 2014 Jan; 343(6168):309-13. PubMed ID: 24436421
    [TBL] [Abstract][Full Text] [Related]  

  • 78. p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer.
    Tschaharganeh DF; Xue W; Calvisi DF; Evert M; Michurina TV; Dow LE; Banito A; Katz SF; Kastenhuber ER; Weissmueller S; Huang CH; Lechel A; Andersen JB; Capper D; Zender L; Longerich T; Enikolopov G; Lowe SW
    Cell; 2014 Jul; 158(3):579-92. PubMed ID: 25083869
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi.
    Zuber J; McJunkin K; Fellmann C; Dow LE; Taylor MJ; Hannon GJ; Lowe SW
    Nat Biotechnol; 2011 Jan; 29(1):79-83. PubMed ID: 21131983
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system.
    Maddalo D; Manchado E; Concepcion CP; Bonetti C; Vidigal JA; Han YC; Ogrodowski P; Crippa A; Rekhtman N; de Stanchina E; Lowe SW; Ventura A
    Nature; 2014 Dec; 516(7531):423-7. PubMed ID: 25337876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.