BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19800811)

  • 1. Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.
    Zirak P; Penzkofer A; Moldt J; Pokorny R; Batschauer A; Essen LO
    J Photochem Photobiol B; 2009 Nov; 97(2):94-108. PubMed ID: 19800811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana.
    Song SH; Dick B; Penzkofer A; Pokorny R; Batschauer A; Essen LO
    J Photochem Photobiol B; 2006 Oct; 85(1):1-16. PubMed ID: 16725342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna.
    Klar T; Pokorny R; Moldt J; Batschauer A; Essen LO
    J Mol Biol; 2007 Feb; 366(3):954-64. PubMed ID: 17188299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of electron transfer in the photoreaction of zebrafish Cryptochrome-DASH.
    Zikihara K; Ishikawa T; Todo T; Tokutomi S
    Photochem Photobiol; 2008; 84(4):1016-23. PubMed ID: 18494763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperactivity of the
    Orth C; Niemann N; Hennig L; Essen LO; Batschauer A
    J Biol Chem; 2017 Aug; 292(31):12906-12920. PubMed ID: 28634231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
    Banerjee R; Schleicher E; Meier S; Viana RM; Pokorny R; Ahmad M; Bittl R; Batschauer A
    J Biol Chem; 2007 May; 282(20):14916-22. PubMed ID: 17355959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus tauri.
    Usman A; Brazard J; Martin MM; Plaza P; Heijde M; Zabulon G; Bowler C
    J Photochem Photobiol B; 2009 Jul; 96(1):38-48. PubMed ID: 19427226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.
    Cailliez F; Müller P; Gallois M; de la Lande A
    J Am Chem Soc; 2014 Sep; 136(37):12974-86. PubMed ID: 25157750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.
    Huang Y; Baxter R; Smith BS; Partch CL; Colbert CL; Deisenhofer J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17701-6. PubMed ID: 17101984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
    Langenbacher T; Immeln D; Dick B; Kottke T
    J Am Chem Soc; 2009 Oct; 131(40):14274-80. PubMed ID: 19754110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of key amino acids in the photoactivation pathway of the Synechocystis Slr1694 BLUF domain.
    Bonetti C; Stierl M; Mathes T; van Stokkum IH; Mullen KM; Cohen-Stuart TA; van Grondelle R; Hegemann P; Kennis JT
    Biochemistry; 2009 Dec; 48(48):11458-69. PubMed ID: 19863128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary intermediate in the photocycle of a blue-light sensory BLUF FAD-protein, Tll0078, of Thermosynechococcus elongatus BP-1.
    Fukushima Y; Okajima K; Shibata Y; Ikeuchi M; Itoh S
    Biochemistry; 2005 Apr; 44(13):5149-58. PubMed ID: 15794652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.
    Brazard J; Usman A; Lacombat F; Ley C; Martin MM; Plaza P; Mony L; Heijde M; Zabulon G; Bowler C
    J Am Chem Soc; 2010 Apr; 132(13):4935-45. PubMed ID: 20222748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Planta Expression: Searching for the Genuine Chromophores of Cryptochrome-3 from Arabidopsis thaliana.
    Gärtner W
    Photochem Photobiol; 2017 Jan; 93(1):382-384. PubMed ID: 28211124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Kottke T; Batschauer A; Ahmad M; Heberle J
    Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
    Damiani MJ; Yalloway GN; Lu J; McLeod NR; O'Neill MA
    Biochemistry; 2009 Dec; 48(48):11399-411. PubMed ID: 19888752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and thermodynamic comparisons of Escherichia coli DNA photolyase and Vibrio cholerae cryptochrome 1.
    Sokolowsky K; Newton M; Lucero C; Wertheim B; Freedman J; Cortazar F; Czochor J; Schelvis JP; Gindt YM
    J Phys Chem B; 2010 May; 114(20):7121-30. PubMed ID: 20438097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into photoactivation of plant Cryptochrome-2.
    Palayam M; Ganapathy J; Guercio AM; Tal L; Deck SL; Shabek N
    Commun Biol; 2021 Jan; 4(1):28. PubMed ID: 33398020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Arabidopsis cryptochrome 2 I404F mutant is hypersensitive and shows flavin reduction even in the absence of light.
    Araguirang GE; Niemann N; Kiontke S; Eckel M; Dionisio-Sese ML; Batschauer A
    Planta; 2019 Dec; 251(1):33. PubMed ID: 31832774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman spectroscopic investigation of the light-harvesting chromophore in escherichia coli photolyase and Vibrio cholerae cryptochrome-1.
    Sokolova O; Cecala C; Gopal A; Cortazar F; McDowell-Buchanan C; Sancar A; Gindt YM; Schelvis JP
    Biochemistry; 2007 Mar; 46(12):3673-81. PubMed ID: 17316023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.