These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19800943)

  • 1. Spatiotemporal dynamics of excitation in rat insular cortex: intrinsic corticocortical circuit regulates caudal-rostro excitatory propagation from the insular to frontal cortex.
    Fujita S; Adachi K; Koshikawa N; Kobayashi M
    Neuroscience; 2010 Jan; 165(1):278-92. PubMed ID: 19800943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilocarpine-induced status epilepticus causes acute interneuron loss and hyper-excitatory propagation in rat insular cortex.
    Chen S; Fujita S; Koshikawa N; Kobayashi M
    Neuroscience; 2010 Mar; 166(1):341-53. PubMed ID: 20018232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical and electrophysiological mechanisms for asymmetrical excitatory propagation in the rat insular cortex: in vivo optical imaging and whole-cell patch-clamp studies.
    Adachi K; Fujita S; Yoshida A; Sakagami H; Koshikawa N; Kobayashi M
    J Comp Neurol; 2013 May; 521(7):1598-613. PubMed ID: 23124629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroscopic connection of rat insular cortex: anatomical bases underlying its physiological functions.
    Kobayashi M
    Int Rev Neurobiol; 2011; 97():285-303. PubMed ID: 21708315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABA(B) receptors accentuate neural excitation contrast in rat insular cortex.
    Fujita S; Koshikawa N; Kobayashi M
    Neuroscience; 2011 Dec; 199():259-71. PubMed ID: 21958865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal dynamics of long-term potentiation in rat insular cortex revealed by optical imaging.
    Mizoguchi N; Fujita S; Koshikawa N; Kobayashi M
    Neurobiol Learn Mem; 2011 Oct; 96(3):468-78. PubMed ID: 21855644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional mapping of gustatory neurons in the insular cortex revealed by pERK-immunohistochemistry and in vivo optical imaging.
    Kobayashi M; Fujita S; Takei H; Song L; Chen S; Suzuki I; Yoshida A; Iwata K; Koshikawa N
    Synapse; 2010 Apr; 64(4):323-34. PubMed ID: 19957366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efferent connections of an auditory area in the caudal insular cortex of the rat: anatomical nodes for cortical streams of auditory processing and cross-modal sensory interactions.
    Kimura A; Imbe H; Donishi T
    Neuroscience; 2010 Apr; 166(4):1140-57. PubMed ID: 20105453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal profiles of transcallosal connections in rat insular cortex revealed by in vivo optical imaging.
    Fujita S; Kitayama T; Mizoguchi N; Oi Y; Koshikawa N; Kobayashi M
    Neuroscience; 2012 Mar; 206():201-11. PubMed ID: 22285884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomic responses and efferent pathways from the insular cortex in the rat.
    Yasui Y; Breder CD; Saper CB; Cechetto DF
    J Comp Neurol; 1991 Jan; 303(3):355-74. PubMed ID: 2007654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptor-mediated transmission contributes to network 'hyperexcitability' in the rat insular cortex.
    Inaba Y; de Guzman P; Avoli M
    Eur J Neurosci; 2006 Feb; 23(4):1071-6. PubMed ID: 16519672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat.
    Cechetto DF; Saper CB
    J Comp Neurol; 1987 Aug; 262(1):27-45. PubMed ID: 2442207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of visceral and limbic connections in the insular cortex of the rat.
    Allen GV; Saper CB; Hurley KM; Cechetto DF
    J Comp Neurol; 1991 Sep; 311(1):1-16. PubMed ID: 1719041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMDA receptor-dependent long-term synaptic depression in the entorhinal cortex in vitro.
    Kourrich S; Chapman CA
    J Neurophysiol; 2003 Apr; 89(4):2112-9. PubMed ID: 12612002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-N-methyl-D-aspartate receptors mediate neocerebellar excitation at accessory oculomotor nuclei synapses of the rat.
    Bosco G; Casabona A; Perciavalle V
    Arch Ital Biol; 1994 Oct; 132(4):215-27. PubMed ID: 7893196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography.
    Ray JP; Price JL
    J Comp Neurol; 1992 Sep; 323(2):167-97. PubMed ID: 1401255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposite effects of mu and delta opioid receptor agonists on excitatory propagation induced in rat somatosensory and insular cortices by dental pulp stimulation.
    Yokota E; Koyanagi Y; Nakamura H; Horinuki E; Oi Y; Kobayashi M
    Neurosci Lett; 2016 Aug; 628():52-8. PubMed ID: 27246300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-methyl-D-aspartate receptors in the insular cortex modulate baroreflex in unanesthetized rats.
    Alves FH; Crestani CC; Resstel LB; Correa FM
    Auton Neurosci; 2009 May; 147(1-2):56-63. PubMed ID: 19217356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical and thalamic afferent connections of the insular and adjacent cortex of the rat.
    Guldin WO; Markowitsch HJ
    J Comp Neurol; 1983 Apr; 215(2):135-53. PubMed ID: 6853769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strengthening of non-NMDA receptor-dependent horizontal pathways between primary and lateral secondary visual cortices after NMDA receptor-dependent oscillatory neural activities.
    Yoshimura H; Sugai T; Segami N; Onoda N
    Brain Res; 2005 Mar; 1036(1-2):60-9. PubMed ID: 15725402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.