These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 19801192)
1. Ras classical effectors: new tales from in silico complexes. Fuentes G; Valencia A Trends Biochem Sci; 2009 Nov; 34(11):533-9. PubMed ID: 19801192 [TBL] [Abstract][Full Text] [Related]
2. A detailed thermodynamic analysis of ras/effector complex interfaces. Kiel C; Serrano L; Herrmann C J Mol Biol; 2004 Jul; 340(5):1039-58. PubMed ID: 15236966 [TBL] [Abstract][Full Text] [Related]
3. Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf. Esser D; Bauer B; Wolthuis RM; Wittinghofer A; Cool RH; Bayer P Biochemistry; 1998 Sep; 37(39):13453-62. PubMed ID: 9753431 [TBL] [Abstract][Full Text] [Related]
4. The effector loop and prenylation site of R-Ras are involved in the regulation of integrin function. Oertli B; Han J; Marte BM; Sethi T; Downward J; Ginsberg M; Hughes PE Oncogene; 2000 Oct; 19(43):4961-9. PubMed ID: 11042683 [TBL] [Abstract][Full Text] [Related]
5. Pressure-induced local unfolding of the Ras binding domain of RalGDS. Inoue K; Yamada H; Akasaka K; Herrmann C; Kremer W; Maurer T; Döker R; Kalbitzer HR Nat Struct Biol; 2000 Jul; 7(7):547-50. PubMed ID: 10876238 [TBL] [Abstract][Full Text] [Related]
6. Recognizing and defining true Ras binding domains II: in silico prediction based on homology modelling and energy calculations. Kiel C; Wohlgemuth S; Rousseau F; Schymkowitz J; Ferkinghoff-Borg J; Wittinghofer F; Serrano L J Mol Biol; 2005 May; 348(3):759-75. PubMed ID: 15826669 [TBL] [Abstract][Full Text] [Related]
7. Solid-state 31P NMR spectroscopy of precipitated guanine nucleotide-binding protein Ras in complexes with its effector molecules Raf kinase and RalGDS. Ader C; Spoerner M; Kalbitzer HR; Brunner E J Phys Chem B; 2007 Mar; 111(10):2752-7. PubMed ID: 17315921 [TBL] [Abstract][Full Text] [Related]
8. Conserved electrostatic fields at the Ras-effector interface measured through vibrational Stark effect spectroscopy explain the difference in tilt angle in the Ras binding domains of Raf and RalGDS. Walker DM; Wang R; Webb LJ Phys Chem Chem Phys; 2014 Oct; 16(37):20047-60. PubMed ID: 25127074 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Ras-effector interactions using position energy matrices. Kiel C; Serrano L Bioinformatics; 2007 Sep; 23(17):2226-30. PubMed ID: 17599936 [TBL] [Abstract][Full Text] [Related]
10. COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Tomić S; Bertosa B; Wang T; Wade RC Proteins; 2007 May; 67(2):435-47. PubMed ID: 17295314 [TBL] [Abstract][Full Text] [Related]
11. Vibrational Stark effect spectroscopy at the interface of Ras and Rap1A bound to the Ras binding domain of RalGDS reveals an electrostatic mechanism for protein-protein interaction. Stafford AJ; Ensign DL; Webb LJ J Phys Chem B; 2010 Nov; 114(46):15331-44. PubMed ID: 20964430 [TBL] [Abstract][Full Text] [Related]
12. Effect on the Ras/Raf signaling pathway of post-translational modifications of neurofibromin: in silico study of protein modification responsible for regulatory pathways. ; Kaleem A; Ahmad I; Walker-Nasir E; Hoessli DC; Shakoori AR J Cell Biochem; 2009 Nov; 108(4):816-24. PubMed ID: 19718661 [TBL] [Abstract][Full Text] [Related]
13. Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K. Ramírez de Molina A; Penalva V; Lucas L; Lacal JC Oncogene; 2002 Jan; 21(6):937-46. PubMed ID: 11840339 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and characterization of Ras- and Raf-homologues from the fox-tapeworm Echinococcus multilocularis. Spiliotis M; Tappe D; Brückner S; Mösch HU; Brehm K Mol Biochem Parasitol; 2005 Feb; 139(2):225-37. PubMed ID: 15664657 [TBL] [Abstract][Full Text] [Related]
15. Modulation of phospholipase D by Ras proteins mediated by its effectors Ral-GDS, PI3K and Raf-1. Lucas L; Penalva V; Ramírez de Molina A; Del Peso L; Lacal JC Int J Oncol; 2002 Sep; 21(3):477-85. PubMed ID: 12168089 [TBL] [Abstract][Full Text] [Related]
16. Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins. Terada T; Ito Y; Shirouzu M; Tateno M; Hashimoto K; Kigawa T; Ebisuzaki T; Takio K; Shibata T; Yokoyama S; Smith BO; Laue ED; Cooper JA J Mol Biol; 1999 Feb; 286(1):219-32. PubMed ID: 9931261 [TBL] [Abstract][Full Text] [Related]
17. Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). Zhou M; Horita DA; Waugh DS; Byrd RA; Morrison DK J Mol Biol; 2002 Jan; 315(3):435-46. PubMed ID: 11786023 [TBL] [Abstract][Full Text] [Related]
18. The transition state of the ras binding domain of Raf is structurally polarized based on Phi-values but is energetically diffuse. Campbell-Valois FX; Michnick SW J Mol Biol; 2007 Feb; 365(5):1559-77. PubMed ID: 17137592 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulations of the Ras:Raf and Rap:Raf complexes. Zeng J; Treutlein HR; Simonson T Proteins; 1999 Apr; 35(1):89-100. PubMed ID: 10090289 [TBL] [Abstract][Full Text] [Related]
20. Different structural requirements within the switch II region of the Ras protein for interactions with specific downstream targets. Moodie SA; Paris M; Villafranca E; Kirshmeier P; Willumsen BM; Wolfman A Oncogene; 1995 Aug; 11(3):447-54. PubMed ID: 7630628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]