BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 19801377)

  • 1. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes.
    Yang W; Di Vizio D; Kirchner M; Steen H; Freeman MR
    Mol Cell Proteomics; 2010 Jan; 9(1):54-70. PubMed ID: 19801377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Enrichment and Direct Analysis of Protein S-Palmitoylation Sites.
    Thinon E; Fernandez JP; Molina H; Hang HC
    J Proteome Res; 2018 May; 17(5):1907-1922. PubMed ID: 29575903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae.
    McCabe JB; Berthiaume LG
    Mol Biol Cell; 2001 Nov; 12(11):3601-17. PubMed ID: 11694592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.
    Colquhoun DR; Lyashkov AE; Ubaida Mohien C; Aquino VN; Bullock BT; Dinglasan RR; Agnew BJ; Graham DR
    Proteomics; 2015 Jun; 15(12):2066-77. PubMed ID: 25914232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3.
    Merrick BA; Dhungana S; Williams JG; Aloor JJ; Peddada S; Tomer KB; Fessler MB
    Mol Cell Proteomics; 2011 Oct; 10(10):M110.006007. PubMed ID: 21785166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid-modified, cysteinyl-containing peptides of diverse structures are efficiently S-acylated at the plasma membrane of mammalian cells.
    Schroeder H; Leventis R; Shahinian S; Walton PA; Silvius JR
    J Cell Biol; 1996 Aug; 134(3):647-60. PubMed ID: 8707845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non-
    Zhou B; Wang Y; Yan Y; Mariscal J; Di Vizio D; Freeman MR; Yang W
    Anal Chem; 2019 Aug; 91(15):9858-9866. PubMed ID: 31251020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Enrichment Coupled with Proteomics to Identify S-Acylated Plasma Membrane Proteins in Arabidopsis.
    Zhou L; Zhou M; Gritsenko MA; Stacey G
    Curr Protoc Plant Biol; 2020 Dec; 5(4):e20119. PubMed ID: 32976704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of S-acylation in protein trafficking.
    Daniotti JL; Pedro MP; Valdez Taubas J
    Traffic; 2017 Nov; 18(11):699-710. PubMed ID: 28837239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-Scale Analysis of Protein
    Wang Y; Yang W
    J Proteome Res; 2021 Jan; 20(1):14-26. PubMed ID: 33253586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.
    Wang Z; Schey KL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8349-60. PubMed ID: 26747763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances and challenges in understanding the role of the lipid raft proteome in human health.
    Mohamed A; Robinson H; Erramouspe PJ; Hill MM
    Expert Rev Proteomics; 2018 Dec; 15(12):1053-1063. PubMed ID: 30403891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dually acylated NH2-terminal domain of gi1alpha is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated g-protein alpha subunits in vivo.
    Galbiati F; Volonte D; Meani D; Milligan G; Lublin DM; Lisanti MP; Parenti M
    J Biol Chem; 1999 Feb; 274(9):5843-50. PubMed ID: 10026207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Proteomic Analysis of S-Fatty Acylated Proteins and Their Modification Sites.
    Thinon E; Hang HC
    Methods Mol Biol; 2019; 2009():45-57. PubMed ID: 31152394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate cell adhesion.
    Woodley KT; Collins MO
    EMBO Rep; 2019 Oct; 20(10):e47472. PubMed ID: 31402609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition for cysteine acylation by C16:0 and C18:0 derived lipids is a global phenomenon in the proteome.
    Nůsková H; Cortizo FG; Schwenker LS; Sachsenheimer T; Diakonov EE; Tiebe M; Schneider M; Lohbeck J; Reid C; Kopp-Schneider A; Helm D; Brügger B; Miller AK; Teleman AA
    J Biol Chem; 2023 Sep; 299(9):105088. PubMed ID: 37495107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the brain palmitoyl-proteome using both acyl-biotin exchange and acyl-resin-assisted capture methods.
    Edmonds MJ; Geary B; Doherty MK; Morgan A
    Sci Rep; 2017 Jun; 7(1):3299. PubMed ID: 28607426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition.
    Stulnig TM; Huber J; Leitinger N; Imre EM; Angelisova P; Nowotny P; Waldhausl W
    J Biol Chem; 2001 Oct; 276(40):37335-40. PubMed ID: 11489905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cycling of t-SNARE acylation regulates platelet exocytosis.
    Zhang J; Huang Y; Chen J; Zhu H; Whiteheart SW
    J Biol Chem; 2018 Mar; 293(10):3593-3606. PubMed ID: 29352103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44.
    Babina IS; McSherry EA; Donatello S; Hill AD; Hopkins AM
    Breast Cancer Res; 2014 Feb; 16(1):R19. PubMed ID: 24512624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.