These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 19801413)
1. Structure-function analysis of Escherichia coli MnmG (GidA), a highly conserved tRNA-modifying enzyme. Shi R; Villarroya M; Ruiz-Partida R; Li Y; Proteau A; Prado S; Moukadiri I; Benítez-Páez A; Lomas R; Wagner J; Matte A; Velázquez-Campoy A; Armengod ME; Cygler M J Bacteriol; 2009 Dec; 191(24):7614-9. PubMed ID: 19801413 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. Meyer S; Scrima A; Versées W; Wittinghofer A J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343 [TBL] [Abstract][Full Text] [Related]
3. Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli. Yim L; Moukadiri I; Björk GR; Armengod ME Nucleic Acids Res; 2006; 34(20):5892-905. PubMed ID: 17062623 [TBL] [Abstract][Full Text] [Related]
4. An Alternative Homodimerization Interface of MnmG Reveals a Conformational Dynamics that Is Essential for Its tRNA Modification Function. Ruiz-Partida R; Prado S; Villarroya M; Velázquez-Campoy A; Bravo J; Armengod ME J Mol Biol; 2018 Aug; 430(17):2822-2842. PubMed ID: 29870725 [TBL] [Abstract][Full Text] [Related]
5. Insights into the Mechanism of Installation of 5-Carboxymethylaminomethyl Uridine Hypermodification by tRNA-Modifying Enzymes MnmE and MnmG. Bommisetti P; Bandarian V J Am Chem Soc; 2023 Dec; 145(49):26947-26961. PubMed ID: 38050996 [TBL] [Abstract][Full Text] [Related]
6. SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization. Fislage M; Brosens E; Deyaert E; Spilotros A; Pardon E; Loris R; Steyaert J; Garcia-Pino A; Versées W Nucleic Acids Res; 2014 May; 42(9):5978-92. PubMed ID: 24634441 [TBL] [Abstract][Full Text] [Related]
7. G-domain dimerization orchestrates the tRNA wobble modification reaction in the MnmE/GidA complex. Meyer S; Wittinghofer A; Versées W J Mol Biol; 2009 Oct; 392(4):910-22. PubMed ID: 19591841 [TBL] [Abstract][Full Text] [Related]
8. Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions. Moukadiri I; Prado S; Piera J; Velázquez-Campoy A; Björk GR; Armengod ME Nucleic Acids Res; 2009 Nov; 37(21):7177-93. PubMed ID: 19767610 [TBL] [Abstract][Full Text] [Related]
9. Conserved cysteine residues of GidA are essential for biogenesis of 5-carboxymethylaminomethyluridine at tRNA anticodon. Osawa T; Ito K; Inanaga H; Nureki O; Tomita K; Numata T Structure; 2009 May; 17(5):713-24. PubMed ID: 19446527 [TBL] [Abstract][Full Text] [Related]
10. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors. Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943 [TBL] [Abstract][Full Text] [Related]
11. The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity. McNeil MB; Fineran PC Biochemistry; 2013 Oct; 52(43):7628-40. PubMed ID: 24070374 [TBL] [Abstract][Full Text] [Related]
12. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding. Zhang W; Zhang M; Zhu W; Zhou Y; Wanduragala S; Rewinkel D; Tanner JJ; Becker DF Biochemistry; 2007 Jan; 46(2):483-91. PubMed ID: 17209558 [TBL] [Abstract][Full Text] [Related]
13. Effects of mutagenesis in the switch I region and conserved arginines of Escherichia coli MnmE protein, a GTPase involved in tRNA modification. Martínez-Vicente M; Yim L; Villarroya M; Mellado M; Pérez-Payá E; Björk GR; Armengod ME J Biol Chem; 2005 Sep; 280(35):30660-70. PubMed ID: 15983041 [TBL] [Abstract][Full Text] [Related]
14. Stabilization of G domain conformations in the tRNA-modifying MnmE-GidA complex observed with double electron electron resonance spectroscopy. Böhme S; Meyer S; Krüger A; Steinhoff HJ; Wittinghofer A; Klare JP J Biol Chem; 2010 May; 285(22):16991-7000. PubMed ID: 20353943 [TBL] [Abstract][Full Text] [Related]
15. The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function. Yim L; Martínez-Vicente M; Villarroya M; Aguado C; Knecht E; Armengod ME J Biol Chem; 2003 Aug; 278(31):28378-87. PubMed ID: 12730230 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the bifunctional tRNA modification enzyme MnmC from Escherichia coli. Kitamura A; Sengoku T; Nishimoto M; Yokoyama S; Bessho Y Protein Sci; 2011 Jul; 20(7):1105-13. PubMed ID: 21574198 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MnmC. Kim J; Almo SC BMC Struct Biol; 2013 Apr; 13():5. PubMed ID: 23617613 [TBL] [Abstract][Full Text] [Related]
18. tRNA modification enzymes GidA and MnmE: potential role in virulence of bacterial pathogens. Shippy DC; Fadl AA Int J Mol Sci; 2014 Oct; 15(10):18267-80. PubMed ID: 25310651 [TBL] [Abstract][Full Text] [Related]
19. Structural and biochemical analyses reveal insights into covalent flavinylation of the Starbird CA; Maklashina E; Sharma P; Qualls-Histed S; Cecchini G; Iverson TM J Biol Chem; 2017 Aug; 292(31):12921-12933. PubMed ID: 28615448 [TBL] [Abstract][Full Text] [Related]