These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 19801476)
1. Analysis of the variability in the number of viable bacteria after mild heat treatment of food. Aguirre JS; Pin C; Rodríguez MR; García de Fernando GD Appl Environ Microbiol; 2009 Nov; 75(22):6992-7. PubMed ID: 19801476 [TBL] [Abstract][Full Text] [Related]
2. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk. Koseki S; Mizuno Y; Yamamoto K Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771 [TBL] [Abstract][Full Text] [Related]
3. Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity. Lang E; Chemlal L; Molin P; Guyot S; Alvarez-Martin P; Perrier-Cornet JM; Dantigny P; Gervais P Food Res Int; 2017 Sep; 99(Pt 1):577-585. PubMed ID: 28784519 [TBL] [Abstract][Full Text] [Related]
4. Diffusible substances from lactic acid bacterial cultures exert strong inhibitory effects on Listeria monocytogenes and Salmonella enterica serovar enteritidis in a co-culture model. Mariam SH; Zegeye N; Aseffa A; Howe R BMC Microbiol; 2017 Feb; 17(1):35. PubMed ID: 28202007 [TBL] [Abstract][Full Text] [Related]
5. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments. Picart L; Thiebaud M; René M; Pierre Guiraud J; Cheftel JC; Dumay E J Dairy Res; 2006 Nov; 73(4):454-63. PubMed ID: 16834813 [TBL] [Abstract][Full Text] [Related]
6. Predicting heat process efficiency in thermal processes when bacterial inactivation is not log-linear. Desriac N; Vergos M; Achberger V; Coroller L; Couvert O Int J Food Microbiol; 2019 Feb; 290():36-41. PubMed ID: 30292677 [TBL] [Abstract][Full Text] [Related]
7. Effects of electron beam irradiation on the variability in survivor number and duration of lag phase of four food-borne organisms. Aguirre JS; Rodríguez MR; García de Fernando GD Int J Food Microbiol; 2011 Oct; 149(3):236-46. PubMed ID: 21798613 [TBL] [Abstract][Full Text] [Related]
8. Individual and combined efficacies of mild heat and ultraviolet-c radiation against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in coconut liquid endosperm. Gabriel AA; Ostonal JM; Cristobal JO; Pagal GA; Armada JVE Int J Food Microbiol; 2018 Jul; 277():64-73. PubMed ID: 29684767 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods. Rachon G; Peñaloza W; Gibbs PA Int J Food Microbiol; 2016 Aug; 231():16-25. PubMed ID: 27174678 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. Van Opstal I; Vanmuysen SC; Wuytack EY; Michiels CW Commun Agric Appl Biol Sci; 2003; 68(3):7-10. PubMed ID: 14702650 [No Abstract] [Full Text] [Related]
11. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment. Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940547 [TBL] [Abstract][Full Text] [Related]
12. Effect of water activity on the thermal inactivation kinetics of Salmonella in milk powders. Wei X; Lau SK; Chaves BD; Danao MC; Agarwal S; Subbiah J J Dairy Sci; 2020 Aug; 103(8):6904-6917. PubMed ID: 32475668 [TBL] [Abstract][Full Text] [Related]
13. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Chen H Food Microbiol; 2007 May; 24(3):197-204. PubMed ID: 17188197 [TBL] [Abstract][Full Text] [Related]
14. Development of thermal inactivation models for Salmonella enteritidis and Escherichia coli O157:H7 with temperature, pH and NaCl as controlling factors. Blackburn CW; Curtis LM; Humpheson L; Billon C; McClure PJ Int J Food Microbiol; 1997 Aug; 38(1):31-44. PubMed ID: 9498135 [TBL] [Abstract][Full Text] [Related]
15. Microbial inactivation and shelf life comparison of 'cold' hurdle processing with pulsed electric fields and microfiltration, and conventional thermal pasteurisation in skim milk. Walkling-Ribeiro M; Rodríguez-González O; Jayaram S; Griffiths MW Int J Food Microbiol; 2011 Jan; 144(3):379-86. PubMed ID: 21078532 [TBL] [Abstract][Full Text] [Related]
16. Effect of dissolved carbon dioxide on thermal inactivation of microorganisms in milk. Loss CR; Hotchkiss JH J Food Prot; 2002 Dec; 65(12):1924-9. PubMed ID: 12495011 [TBL] [Abstract][Full Text] [Related]
17. Effect of heat treatment on Listeria monocytogenes and gram-negative bacteria in sheep, cow and goat milks. MacDonald F; Sutherland AD J Appl Bacteriol; 1993 Oct; 75(4):336-43. PubMed ID: 8226390 [TBL] [Abstract][Full Text] [Related]
18. Ozone-based treatments for inactivation of Salmonella enterica in tree nuts: Inoculation protocol and surrogate suitability considerations. Perry JJ; Peña-Melendez M; Yousef AE Int J Food Microbiol; 2019 May; 297():21-26. PubMed ID: 30856385 [TBL] [Abstract][Full Text] [Related]
19. Modeling the irradiation followed by heat inactivation of Salmonella inoculated in liquid whole egg. Alvarez I; Niemira BA; Fan X; Sommers CH J Food Sci; 2007 Jun; 72(5):M145-52. PubMed ID: 17995736 [TBL] [Abstract][Full Text] [Related]
20. Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface. Wang X; Devlieghere F; Geeraerd A; Uyttendaele M Int J Food Microbiol; 2017 Feb; 243():70-77. PubMed ID: 28011300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]