These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 19801478)
1. High ratio of bacteriochlorophyll biosynthesis genes to chlorophyll biosynthesis genes in bacteria of humic lakes. Eiler A; Beier S; Säwström C; Karlsson J; Bertilsson S Appl Environ Microbiol; 2009 Nov; 75(22):7221-8. PubMed ID: 19801478 [TBL] [Abstract][Full Text] [Related]
2. Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Kaschner M; Loeschcke A; Krause J; Minh BQ; Heck A; Endres S; Svensson V; Wirtz A; von Haeseler A; Jaeger KE; Drepper T; Krauss U Mol Microbiol; 2014 Sep; 93(5):1066-78. PubMed ID: 25039543 [TBL] [Abstract][Full Text] [Related]
4. The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Hamilton TL Free Radic Biol Med; 2019 Aug; 140():233-249. PubMed ID: 31078729 [TBL] [Abstract][Full Text] [Related]
5. Effects of gilvin on the composition and dynamics of metalimnetic communities of phototrophic bacteria in freshwater North-American lakes. Vila X; Cristina XP; Abella CA; Hurley JP J Appl Microbiol; 1998 Dec; 85 Suppl 1():138S-150S. PubMed ID: 21182703 [TBL] [Abstract][Full Text] [Related]
6. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Shui J; Saunders E; Needleman R; Nappi M; Cooper J; Hall L; Kehoe D; Stowe-Evans E Plant Cell Physiol; 2009 Aug; 50(8):1507-21. PubMed ID: 19561333 [TBL] [Abstract][Full Text] [Related]
7. Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Yamazaki S; Nomata J; Fujita Y Plant Physiol; 2006 Nov; 142(3):911-22. PubMed ID: 17028153 [TBL] [Abstract][Full Text] [Related]
8. Origin and evolution of the light-dependent protochlorophyllide oxidoreductase (LPOR) genes. Yang J; Cheng Q Plant Biol (Stuttg); 2004 Sep; 6(5):537-44. PubMed ID: 15375724 [TBL] [Abstract][Full Text] [Related]
9. A New Niche for Anoxygenic Phototrophs as Endoliths. Roush D; Couradeau E; Guida B; Neuer S; Garcia-Pichel F Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222097 [TBL] [Abstract][Full Text] [Related]
10. High abundances of aerobic anoxygenic phototrophs in saline steppe lakes. Medová H; Boldareva EN; Hrouzek P; Borzenko SV; Namsaraev ZB; Gorlenko VM; Namsaraev BB; Koblížek M FEMS Microbiol Ecol; 2011 May; 76(2):393-400. PubMed ID: 21265869 [TBL] [Abstract][Full Text] [Related]
11. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Reinbothe C; El Bakkouri M; Buhr F; Muraki N; Nomata J; Kurisu G; Fujita Y; Reinbothe S Trends Plant Sci; 2010 Nov; 15(11):614-24. PubMed ID: 20801074 [TBL] [Abstract][Full Text] [Related]
12. Substrate recognition of nitrogenase-like dark operative protochlorophyllide oxidoreductase from Prochlorococcus marinus. Bröcker MJ; Wätzlich D; Uliczka F; Virus S; Saggu M; Lendzian F; Scheer H; Rüdiger W; Moser J; Jahn D J Biol Chem; 2008 Oct; 283(44):29873-81. PubMed ID: 18693243 [TBL] [Abstract][Full Text] [Related]
13. Temperature and Geographic Location Impact the Distribution and Diversity of Photoautotrophic Gene Variants in Alkaline Yellowstone Hot Springs. Bennett AC; Murugapiran SK; Kees ED; Sauer HM; Hamilton TL Microbiol Spectr; 2022 Jun; 10(3):e0146521. PubMed ID: 35575591 [TBL] [Abstract][Full Text] [Related]
14. Taxonomic differences shape the responses of freshwater aerobic anoxygenic phototrophic bacterial communities to light and predation. Ruiz-González C; Garcia-Chaves MC; Ferrera I; Niño-García JP; Del Giorgio PA Mol Ecol; 2020 Apr; 29(7):1267-1283. PubMed ID: 32147876 [TBL] [Abstract][Full Text] [Related]
15. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. Jiang H; Dong H; Yu B; Lv G; Deng S; Wu Y; Dai M; Jiao N FEMS Microbiol Ecol; 2009 Feb; 67(2):268-78. PubMed ID: 19016867 [TBL] [Abstract][Full Text] [Related]
16. Emended description of the genus Tabrizicola and the species Tabrizicola aquatica as aerobic anoxygenic phototrophic bacteria. Tarhriz V; Hirose S; Fukushima SI; Hejazi MA; Imhoff JF; Thiel V; Hejazi MS Antonie Van Leeuwenhoek; 2019 Aug; 112(8):1169-1175. PubMed ID: 30863942 [TBL] [Abstract][Full Text] [Related]
17. Aerobic anoxygenic phototrophs are highly abundant in hypertrophic and polyhumic waters. Szabó-Tugyi N; Vörös L; V-Balogh K; Botta-Dukát Z; Bernát G; Schmera D; Somogyi B FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31291460 [TBL] [Abstract][Full Text] [Related]
18. Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function. Chernomor O; Peters L; Schneidewind J; Loeschcke A; Knieps-Grünhagen E; Schmitz F; von Lieres E; Kutta RJ; Svensson V; Jaeger KE; Drepper T; von Haeseler A; Krauss U Mol Biol Evol; 2021 Mar; 38(3):819-837. PubMed ID: 32931580 [TBL] [Abstract][Full Text] [Related]
19. Granick revisited: Synthesizing evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages and horizontal gene transfer. Ward LM; Shih PM PLoS One; 2021; 16(1):e0239248. PubMed ID: 33507911 [TBL] [Abstract][Full Text] [Related]
20. Unique communities of anoxygenic phototrophic bacteria in saline lakes of Salar de Atacama (Chile): evidence for a new phylogenetic lineage of phototrophic Gammaproteobacteria from pufLM gene analyses. Thiel V; Tank M; Neulinger SC; Gehrmann L; Dorador C; Imhoff JF FEMS Microbiol Ecol; 2010 Dec; 74(3):510-22. PubMed ID: 20868378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]