These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19801532)

  • 21. Interactions of drugs and toxins with permeant ions in potassium, sodium, and calcium channels.
    Zhorov BS
    Ross Fiziol Zh Im I M Sechenova; 2011 Jul; 97(7):661-77. PubMed ID: 21961291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons.
    Lien CC; Jonas P
    J Neurosci; 2003 Mar; 23(6):2058-68. PubMed ID: 12657664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional characterization of sodium channel blockers by membrane potential measurements in cerebellar neurons: prediction of compound preference for the open/inactivated state.
    Kolok S; Nagy J; Szombathelyi Z; Tarnawa I
    Neurochem Int; 2006 Nov; 49(6):593-604. PubMed ID: 16777267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ tight-seal recordings of taste substance-elicited action currents and voltage-gated Ba currents from single taste bud cells in the peeled epithelium of mouse tongue.
    Furue H; Yoshii K
    Brain Res; 1997 Nov; 776(1-2):133-9. PubMed ID: 9439805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetrapentylammonium block of chloramine-T and veratridine modified rat brain type IIA sodium channels.
    Ghatpande AS; Rao S; Sikdar SK
    Br J Pharmacol; 2001 Apr; 132(8):1755-60. PubMed ID: 11309247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane potential dependent binding of scorpion toxin to action potential Na+ ionophore.
    Catterall WA; Ray R; Morrow CS
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2682-6. PubMed ID: 1066680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels.
    Redaelli E; Cassulini RR; Silva DF; Clement H; Schiavon E; Zamudio FZ; Odell G; Arcangeli A; Clare JJ; Alagón A; de la Vega RCR; Possani LD; Wanke E
    J Biol Chem; 2010 Feb; 285(6):4130-4142. PubMed ID: 19955179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two heteromeric Kv1 potassium channels differentially regulate action potential firing.
    Dodson PD; Barker MC; Forsythe ID
    J Neurosci; 2002 Aug; 22(16):6953-61. PubMed ID: 12177193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions between anemone toxin II and veratridine on single neuronal sodium channels.
    Castillo C; Piernavieja C; Recio-Pinto E
    Brain Res; 1996 Sep; 733(2):243-52. PubMed ID: 8891307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term actions of interleukin-1β on K
    Noh MC; Stemkowski PL; Smith PA
    J Neuroimmunol; 2019 Jul; 332():198-211. PubMed ID: 31077855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage-dependent potassium channels in mouse Schwann cells.
    Konishi T
    J Physiol; 1989 Apr; 411():115-30. PubMed ID: 2559192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voltage-gated potassium channels in retinal ganglion cells of trout: a combined biophysical, pharmacological, and single-cell RT-PCR approach.
    Henne J; Pöttering S; Jeserich G
    J Neurosci Res; 2000 Dec; 62(5):629-37. PubMed ID: 11104501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel.
    Campos FV; Chanda B; Beirão PS; Bezanilla F
    J Gen Physiol; 2007 Sep; 130(3):257-68. PubMed ID: 17698594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single voltage-gated K+ channels and their functions in small dorsal root ganglion neurones of rat.
    Safronov BV; Bischoff U; Vogel W
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):393-408. PubMed ID: 8782104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Action potential changes associated with a slowed inactivation of cardiac voltage-gated sodium channels by KB130015.
    Macianskiene R; Bito V; Raeymaekers L; Brandts B; Sipido KR; Mubagwa K
    Br J Pharmacol; 2003 Aug; 139(8):1469-79. PubMed ID: 12922934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrated view of the molecular toxinology of sodium channel gating in excitable cells.
    Strichartz G; Rando T; Wang GK
    Annu Rev Neurosci; 1987; 10():237-67. PubMed ID: 2436544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overview of toxins and drugs as tools to study excitable membrane ion channels: I. Voltage-activated channels.
    Narahashi T; Herman MD
    Methods Enzymol; 1992; 207():620-43. PubMed ID: 1326704
    [No Abstract]   [Full Text] [Related]  

  • 39. Underlying mechanism of actions of tefluthrin, a pyrethroid insecticide, on voltage-gated ion currents and on action currents in pituitary tumor (GH3) cells and GnRH-secreting (GT1-7) neurons.
    Wu SN; Wu YH; Chen BS; Lo YC; Liu YC
    Toxicology; 2009 Apr; 258(1):70-7. PubMed ID: 19378468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums.
    O'Leary ME; Horn R
    J Gen Physiol; 1994 Sep; 104(3):507-22. PubMed ID: 7807059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.