BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19801540)

  • 1. Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold.
    Cuneo MJ; Beese LS; Hellinga HW
    J Biol Chem; 2009 Nov; 284(48):33217-23. PubMed ID: 19801540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular details of ligand selectivity determinants in a promiscuous β-glucan periplasmic binding protein.
    Munshi P; Stanley CB; Ghimire-Rijal S; Lu X; Myles DA; Cuneo MJ
    BMC Struct Biol; 2013 Oct; 13():18. PubMed ID: 24090243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars.
    Nanavati DM; Thirangoon K; Noll KM
    Appl Environ Microbiol; 2006 Feb; 72(2):1336-45. PubMed ID: 16461685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a periplasmic glucose-binding protein from Thermotoga maritima.
    Palani K; Kumaran D; Burley SK; Swaminathan S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Dec; 68(Pt 12):1460-4. PubMed ID: 23192024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites.
    Cuneo MJ; Changela A; Warren JJ; Beese LS; Hellinga HW
    J Mol Biol; 2006 Sep; 362(2):259-70. PubMed ID: 16904687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms.
    Notenboom V; Boraston AB; Kilburn DG; Rose DR
    Biochemistry; 2001 May; 40(21):6248-56. PubMed ID: 11371186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping periplasmic binding protein oligosaccharide recognition with neutron crystallography.
    Shukla S; Myles DA; Cuneo MJ
    Sci Rep; 2022 Oct; 12(1):17647. PubMed ID: 36271099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose.
    Wu TH; Huang CH; Ko TP; Lai HL; Ma Y; Chen CC; Cheng YS; Liu JR; Guo RT
    Biochim Biophys Acta; 2011 Dec; 1814(12):1832-40. PubMed ID: 21839861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periplasmic solute-binding proteins: Structure classification and chitooligosaccharide recognition.
    Fukamizo T; Kitaoku Y; Suginta W
    Int J Biol Macromol; 2019 May; 128():985-993. PubMed ID: 30771387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure and substrate-binding mode of cellulase 12A from Thermotoga maritima.
    Cheng YS; Ko TP; Wu TH; Ma Y; Huang CH; Lai HL; Wang AH; Liu JR; Guo RT
    Proteins; 2011 Apr; 79(4):1193-204. PubMed ID: 21268113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplication of genes in an ATP-binding cassette transport system increases dynamic range while maintaining ligand specificity.
    Ghimire-Rijal S; Lu X; Myles DA; Cuneo MJ
    J Biol Chem; 2014 Oct; 289(43):30090-100. PubMed ID: 25210043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima.
    Luchansky MS; Der BS; D'Auria S; Pocsfalvi G; Iozzino L; Marasco D; Dattelbaum JD
    Mol Biosyst; 2010 Jan; 6(1):142-51. PubMed ID: 20024076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of a periplasmic binding protein in the tripartite ATP-independent transporter family reveals a tetrameric assembly that may have a role in ligand transport.
    Cuneo MJ; Changela A; Miklos AE; Beese LS; Krueger JK; Hellinga HW
    J Biol Chem; 2008 Nov; 283(47):32812-20. PubMed ID: 18723845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a putative oligopeptide-binding periplasmic protein from a hyperthermophile.
    Yoon HJ; Kim HJ; Mikami B; Yu YG; Lee HH
    Extremophiles; 2016 Sep; 20(5):723-31. PubMed ID: 27377296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based design of robust glucose biosensors using a Thermotoga maritima periplasmic glucose-binding protein.
    Tian Y; Cuneo MJ; Changela A; Höcker B; Beese LS; Hellinga HW
    Protein Sci; 2007 Oct; 16(10):2240-50. PubMed ID: 17766373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-induced conformational changes in a thermophilic ribose-binding protein.
    Cuneo MJ; Beese LS; Hellinga HW
    BMC Struct Biol; 2008 Nov; 8():50. PubMed ID: 19019243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding.
    Li L; Ghimire-Rijal S; Lucas SL; Stanley CB; Wright E; Agarwal PK; Myles DA; Cuneo MJ
    Biochemistry; 2017 Oct; 56(40):5328-5337. PubMed ID: 28876049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis.
    Spurlino JC; Lu GY; Quiocho FA
    J Biol Chem; 1991 Mar; 266(8):5202-19. PubMed ID: 2002054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural basis of sequence-independent peptide binding by OppA protein.
    Tame JR; Murshudov GN; Dodson EJ; Neil TK; Dodson GG; Higgins CF; Wilkinson AJ
    Science; 1994 Jun; 264(5165):1578-81. PubMed ID: 8202710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unique binding mode of cellulosomal CBM4 from Clostridium thermocellum cellobiohydrolase A.
    Alahuhta M; Xu Q; Bomble YJ; Brunecky R; Adney WS; Ding SY; Himmel ME; Lunin VV
    J Mol Biol; 2010 Sep; 402(2):374-87. PubMed ID: 20654622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.