These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 19801546)
1. Crystal structure of the MecA degradation tag. Wang F; Mei Z; Qi Y; Yan C; Xiang S; Zhou Z; Hu Q; Wang J; Shi Y J Biol Chem; 2009 Dec; 284(49):34376-81. PubMed ID: 19801546 [TBL] [Abstract][Full Text] [Related]
2. Molecular determinants of MecA as a degradation tag for the ClpCP protease. Mei Z; Wang F; Qi Y; Zhou Z; Hu Q; Li H; Wu J; Shi Y J Biol Chem; 2009 Dec; 284(49):34366-75. PubMed ID: 19767395 [TBL] [Abstract][Full Text] [Related]
3. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Persuh M; Turgay K; Mandic-Mulec I; Dubnau D Mol Microbiol; 1999 Aug; 33(4):886-94. PubMed ID: 10447896 [TBL] [Abstract][Full Text] [Related]
4. A peptide signal for adapter protein-mediated degradation by the AAA+ protease ClpCP. Prepiak P; Dubnau D Mol Cell; 2007 Jun; 26(5):639-47. PubMed ID: 17560370 [TBL] [Abstract][Full Text] [Related]
5. Control of natural transformation in salivarius Streptococci through specific degradation of σX by the MecA-ClpCP protease complex. Wahl A; Servais F; Drucbert AS; Foulon C; Fontaine L; Hols P J Bacteriol; 2014 Aug; 196(15):2807-16. PubMed ID: 24837292 [TBL] [Abstract][Full Text] [Related]
6. A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. Persuh M; Mandic-Mulec I; Dubnau D J Bacteriol; 2002 Apr; 184(8):2310-3. PubMed ID: 11914365 [TBL] [Abstract][Full Text] [Related]
7. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. Turgay K; Hahn J; Burghoorn J; Dubnau D EMBO J; 1998 Nov; 17(22):6730-8. PubMed ID: 9890793 [TBL] [Abstract][Full Text] [Related]
8. 1.6 A crystal structure of YteR protein from Bacillus subtilis, a predicted lyase. Zhang R; Minh T; Lezondra L; Korolev S; Moy SF; Collart F; Joachimiak A Proteins; 2005 Aug; 60(3):561-5. PubMed ID: 15906318 [No Abstract] [Full Text] [Related]
9. Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA lyases suggest a common catalytic mechanism among a family of TIM barrel metalloenzymes cleaving carbon-carbon bonds. Forouhar F; Hussain M; Farid R; Benach J; Abashidze M; Edstrom WC; Vorobiev SM; Xiao R; Acton TB; Fu Z; Kim JJ; Miziorko HM; Montelione GT; Hunt JF J Biol Chem; 2006 Mar; 281(11):7533-45. PubMed ID: 16330546 [TBL] [Abstract][Full Text] [Related]
10. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. Liu J; Mei Z; Li N; Qi Y; Xu Y; Shi Y; Wang F; Lei J; Gao N J Biol Chem; 2013 Jun; 288(24):17597-608. PubMed ID: 23595989 [TBL] [Abstract][Full Text] [Related]
11. Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response. Turgay K; Persuh M; Hahn J; Dubnau D Mol Microbiol; 2001 Nov; 42(3):717-27. PubMed ID: 11722737 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the thioesterification conformation of Chen Y; Li TL; Lin X; Li X; Li XD; Guo Z J Biol Chem; 2017 Jul; 292(29):12296-12310. PubMed ID: 28559280 [No Abstract] [Full Text] [Related]
13. The crystal structure of YycH involved in the regulation of the essential YycFG two-component system in Bacillus subtilis reveals a novel tertiary structure. Szurmant H; Zhao H; Mohan MA; Hoch JA; Varughese KI Protein Sci; 2006 Apr; 15(4):929-34. PubMed ID: 16600972 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of a bifunctional deaminase and reductase from Bacillus subtilis involved in riboflavin biosynthesis. Chen SC; Chang YC; Lin CH; Lin CH; Liaw SH J Biol Chem; 2006 Mar; 281(11):7605-13. PubMed ID: 16308316 [TBL] [Abstract][Full Text] [Related]
15. Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction. Nakano MM; Nakano S; Zuber P Mol Microbiol; 2002 Jun; 44(5):1341-9. PubMed ID: 12028382 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Ogura M; Liu L; Lacelle M; Nakano MM; Zuber P Mol Microbiol; 1999 May; 32(4):799-812. PubMed ID: 10361283 [TBL] [Abstract][Full Text] [Related]
17. Functional domains of the Bacillus subtilis transcription factor AraR and identification of amino acids important for nucleoprotein complex assembly and effector binding. Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I J Bacteriol; 2006 Apr; 188(8):3024-36. PubMed ID: 16585763 [TBL] [Abstract][Full Text] [Related]
18. Structure of Spo0M, a sporulation-control protein from Bacillus subtilis. Sonoda Y; Mizutani K; Mikami B Acta Crystallogr F Struct Biol Commun; 2015 Dec; 71(Pt 12):1488-97. PubMed ID: 26625291 [TBL] [Abstract][Full Text] [Related]
19. Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine. Blair DE; van Aalten DM FEBS Lett; 2004 Jul; 570(1-3):13-9. PubMed ID: 15251431 [TBL] [Abstract][Full Text] [Related]
20. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Kong L; Dubnau D Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5793-7. PubMed ID: 8016067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]