These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19801547)

  • 1. Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal.
    Noorwez SM; Sama RR; Kaushal S
    J Biol Chem; 2009 Nov; 284(48):33333-42. PubMed ID: 19801547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calnexin is not essential for mammalian rod opsin biogenesis.
    Kosmaoglou M; Cheetham ME
    Mol Vis; 2008; 14():2466-74. PubMed ID: 19116670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Misfolded rhodopsin mutants display variable aggregation properties.
    Gragg M; Park PS
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2938-2948. PubMed ID: 29890221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Structural development study of a novel pharmacological chaperone for folding-defective rhodopsin mutants responsible for retinitis pigmentosa].
    Ohgane K; Dodo K; Hashimoto Y
    Yakugaku Zasshi; 2011 Mar; 131(3):325-34. PubMed ID: 21372525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation.
    Saliba RS; Munro PM; Luthert PJ; Cheetham ME
    J Cell Sci; 2002 Jul; 115(Pt 14):2907-18. PubMed ID: 12082151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinobenzaldehydes as proper-trafficking inducers of folding-defective P23H rhodopsin mutant responsible for retinitis pigmentosa.
    Ohgane K; Dodo K; Hashimoto Y
    Bioorg Med Chem; 2010 Oct; 18(19):7022-8. PubMed ID: 20805032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function.
    Opefi CA; South K; Reynolds CA; Smith SO; Reeves PJ
    J Biol Chem; 2013 Nov; 288(47):33912-33926. PubMed ID: 24106275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila.
    Griciuc A; Aron L; Roux MJ; Klein R; Giangrande A; Ueffing M
    PLoS Genet; 2010 Aug; 6(8):. PubMed ID: 20865169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
    Tam BM; Moritz OL
    J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological manipulation of rhodopsin retinitis pigmentosa.
    Mendes HF; Zaccarini R; Cheetham ME
    Adv Exp Med Biol; 2010; 664():317-23. PubMed ID: 20238031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa.
    Kaushal S; Khorana HG
    Biochemistry; 1994 May; 33(20):6121-8. PubMed ID: 8193125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.
    Chen Y; Chen Y; Jastrzebska B; Golczak M; Gulati S; Tang H; Seibel W; Li X; Jin H; Han Y; Gao S; Zhang J; Liu X; Heidari-Torkabadi H; Stewart PL; Harte WE; Tochtrop GP; Palczewski K
    Nat Commun; 2018 May; 9(1):1976. PubMed ID: 29773803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C.
    Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa.
    Liu X; Feng B; Vats A; Tang H; Seibel W; Swaroop M; Tawa G; Zheng W; Byrne L; Schurdak M; Chen Y
    FASEB J; 2020 Aug; 34(8):10146-10167. PubMed ID: 32536017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H.
    Noorwez SM; Malhotra R; McDowell JH; Smith KA; Krebs MP; Kaushal S
    J Biol Chem; 2004 Apr; 279(16):16278-84. PubMed ID: 14769795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inherent instability of the retinitis pigmentosa P23H mutant opsin.
    Chen Y; Jastrzebska B; Cao P; Zhang J; Wang B; Sun W; Yuan Y; Feng Z; Palczewski K
    J Biol Chem; 2014 Mar; 289(13):9288-303. PubMed ID: 24515108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
    Mendes HF; Cheetham ME
    Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.