BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19801632)

  • 1. A biosensor for fluorescent determination of ADP with high time resolution.
    Kunzelmann S; Webb MR
    J Biol Chem; 2009 Nov; 284(48):33130-8. PubMed ID: 19801632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescent, reagentless biosensor for ADP based on tetramethylrhodamine-labeled ParM.
    Kunzelmann S; Webb MR
    ACS Chem Biol; 2010 Apr; 5(4):415-25. PubMed ID: 20158267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When is weaker better? Design of an ADP sensor with weak ADP affinity, but still selective against ATP.
    Hackney DD
    ACS Chem Biol; 2010 Apr; 5(4):353-4. PubMed ID: 20394442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence detection of GDP in real time with the reagentless biosensor rhodamine-ParM.
    Kunzelmann S; Webb MR
    Biochem J; 2011 Nov; 440(1):43-9. PubMed ID: 21812760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TNP-ATP and TNP-ADP as probes of the nucleotide binding site of CheA, the histidine protein kinase in the chemotaxis signal transduction pathway of Escherichia coli.
    Stewart RC; VanBruggen R; Ellefson DD; Wolfe AJ
    Biochemistry; 1998 Sep; 37(35):12269-79. PubMed ID: 9724541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a range of fluorescent reagentless biosensors for ATP, based on malonyl-coenzyme A synthetase.
    Vancraenenbroeck R; Kunzelmann S; Webb MR
    PLoS One; 2017; 12(6):e0179547. PubMed ID: 28636641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescent sensor of the phosphorylation state of nucleoside diphosphate kinase and its use to monitor nucleoside diphosphate concentrations in real time.
    Brune M; Corrie JE; Webb MR
    Biochemistry; 2001 Apr; 40(16):5087-94. PubMed ID: 11305926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase.
    Brune M; Hunter JL; Corrie JE; Webb MR
    Biochemistry; 1994 Jul; 33(27):8262-71. PubMed ID: 8031761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential and simultaneous adenosine di- and triphosphate binding by MutS.
    Bjornson KP; Modrich P
    J Biol Chem; 2003 May; 278(20):18557-62. PubMed ID: 12624105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli.
    Silberg JJ; Vickery LE
    J Biol Chem; 2000 Mar; 275(11):7779-86. PubMed ID: 10713091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 70S ribosome modulates the ATPase activity of Escherichia coli YchF.
    Becker M; Gzyl KE; Altamirano AM; Vuong A; Urban K; Wieden HJ
    RNA Biol; 2012 Oct; 9(10):1288-301. PubMed ID: 22995830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random copolymerization of ATP-actin and ADP-actin.
    Ohm T; Wegner A
    Biochemistry; 1991 Nov; 30(47):11193-7. PubMed ID: 1958656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of myosinV-S1 using a new fluorescent ATP analogue.
    Forgacs E; Cartwright S; Kovács M; Sakamoto T; Sellers JR; Corrie JE; Webb MR; White HD
    Biochemistry; 2006 Oct; 45(43):13035-45. PubMed ID: 17059220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-site mechanism for ATP hydrolysis by the asymmetric Rep dimer P2S as revealed by site-specific inhibition with ADP-A1F4.
    Wong I; Lohman TM
    Biochemistry; 1997 Mar; 36(11):3115-25. PubMed ID: 9115987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR; Ferenczi MA
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):125-48. PubMed ID: 9174999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F
    Lapashina AS; Shugaeva TE; Berezina KM; Kholina TD; Feniouk BA
    Biochemistry (Mosc); 2019 Apr; 84(4):407-415. PubMed ID: 31228932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the active site of YjeE: a vital Escherichia coli protein of unknown function.
    Allali-Hassani A; Campbell TL; Ho A; Schertzer JW; Brown ED
    Biochem J; 2004 Dec; 384(Pt 3):577-84. PubMed ID: 15324301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.