BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 19801635)

  • 21. The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis.
    Laker RC; Taddeo EP; Akhtar YN; Zhang M; Hoehn KL; Yan Z
    PLoS One; 2016; 11(12):e0167910. PubMed ID: 28005946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory and anchoring domains in the ATPase inhibitor protein IF1 of bovine heart mitochondrial ATP synthase.
    Zanotti F; Raho G; Gaballo A; Papa S
    J Bioenerg Biomembr; 2004 Oct; 36(5):447-57. PubMed ID: 15534392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition.
    Leung AW; Varanyuwatana P; Halestrap AP
    J Biol Chem; 2008 Sep; 283(39):26312-23. PubMed ID: 18667415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The bound adenine nucleotides of purified bovine mitochondrial ATP synthase.
    Beharry S; Bragg PD
    Eur J Biochem; 1996 Aug; 240(1):165-72. PubMed ID: 8797850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclophilin D Modulates the Cardiac Mitochondrial Target of Isoflurane, Sevoflurane, and Desflurane.
    Harisseh R; Chiari P; Villedieu C; Sueur P; Abrial M; Fellahi JL; Ovize M; Gharib A
    J Cardiovasc Pharmacol; 2017 May; 69(5):326-334. PubMed ID: 28328748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP synthase complex from bovine heart mitochondria. Subunit arrangement as revealed by nearest neighbor analysis and susceptibility to trypsin.
    Joshi S; Burrows R
    J Biol Chem; 1990 Aug; 265(24):14518-25. PubMed ID: 2143762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition.
    Gutiérrez-Aguilar M; Douglas DL; Gibson AK; Domeier TL; Molkentin JD; Baines CP
    J Mol Cell Cardiol; 2014 Jul; 72():316-25. PubMed ID: 24768964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The inhibitor protein (IF1) promotes dimerization of the mitochondrial F1F0-ATP synthase.
    García JJ; Morales-Ríos E; Cortés-Hernandez P; Rodríguez-Zavala JS
    Biochemistry; 2006 Oct; 45(42):12695-703. PubMed ID: 17042487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.
    Gasanov SE; Kim AA; Yaguzhinsky LS; Dagda RK
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):586-599. PubMed ID: 29179995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of the mitochondrial permeability transition by cyclophilin D: moving closer to F(0)-F(1) ATP synthase?
    Chinopoulos C; Adam-Vizi V
    Mitochondrion; 2012 Jan; 12(1):41-5. PubMed ID: 21586346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of mitochondrial cyclophilin D, a downstream target of glycogen synthase kinase 3α, improves sperm motility.
    Park SH; Gye MC
    Reprod Biol Endocrinol; 2024 Jan; 22(1):15. PubMed ID: 38254112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization.
    Lin DT; Lechleiter JD
    J Biol Chem; 2002 Aug; 277(34):31134-41. PubMed ID: 12077116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypoxic preconditioning-induced mitochondrial protection is not disrupted in a cell model of mtDNA T8993G mutation-induced F1F0-ATP synthase defect: the role of mitochondrial permeability transition.
    Huang WY; Jou MJ; Peng TI
    Free Radic Biol Med; 2014 Feb; 67():314-29. PubMed ID: 24291231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase.
    Papa S; Zanotti F; Cocco T; Perrucci C; Candita C; Minuto M
    Eur J Biochem; 1996 Sep; 240(2):461-7. PubMed ID: 8841413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Association of two proteolipids of unknown function with ATP synthase from bovine heart mitochondria.
    Chen R; Runswick MJ; Carroll J; Fearnley IM; Walker JE
    FEBS Lett; 2007 Jul; 581(17):3145-8. PubMed ID: 17570365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation.
    Wittig I; Carrozzo R; Santorelli FM; Schägger H
    Biochim Biophys Acta; 2006; 1757(9-10):1066-72. PubMed ID: 16782043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional crystallization of intact F-ATP synthase isolated from bovine heart mitochondria.
    Maeda S; Shinzawa-Itoh K; Mieda K; Yamamoto M; Nakashima Y; Ogasawara Y; Jiko C; Tani K; Miyazawa A; Gerle C; Yoshikawa S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Dec; 69(Pt 12):1368-70. PubMed ID: 24316832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning.
    Hausenloy DJ; Lim SY; Ong SG; Davidson SM; Yellon DM
    Cardiovasc Res; 2010 Oct; 88(1):67-74. PubMed ID: 20400621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knockout of cyclophilin D in Ppif⁻/⁻ mice increases stability of brain mitochondria against Ca²⁺ stress.
    Gainutdinov T; Molkentin JD; Siemen D; Ziemer M; Debska-Vielhaber G; Vielhaber S; Gizatullina Z; Orynbayeva Z; Gellerich FN
    Arch Biochem Biophys; 2015 Aug; 579():40-6. PubMed ID: 26032335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.