These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 19801667)

  • 1. Structure-based mechanism of ADP-ribosylation by sirtuins.
    Hawse WF; Wolberger C
    J Biol Chem; 2009 Nov; 284(48):33654-61. PubMed ID: 19801667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural basis of sirtuin substrate affinity.
    Cosgrove MS; Bever K; Avalos JL; Muhammad S; Zhang X; Wolberger C
    Biochemistry; 2006 Jun; 45(24):7511-21. PubMed ID: 16768447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side chain specificity of ADP-ribosylation by a sirtuin.
    Fahie K; Hu P; Swatkoski S; Cotter RJ; Zhang Y; Wolberger C
    FEBS J; 2009 Dec; 276(23):7159-76. PubMed ID: 19895577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of a Sir2 enzyme bound to an acetylated p53 peptide.
    Avalos JL; Celic I; Muhammad S; Cosgrove MS; Boeke JD; Wolberger C
    Mol Cell; 2002 Sep; 10(3):523-35. PubMed ID: 12408821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the mechanism and regulation of Sir2 enzymes.
    Avalos JL; Boeke JD; Wolberger C
    Mol Cell; 2004 Mar; 13(5):639-48. PubMed ID: 15023335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
    Khan AN; Lewis PN
    J Biol Chem; 2006 Apr; 281(17):11702-11. PubMed ID: 16520376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.
    Sauve AA; Schramm VL
    Curr Med Chem; 2004 Apr; 11(7):807-26. PubMed ID: 15078167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase.
    Liszt G; Ford E; Kurtev M; Guarente L
    J Biol Chem; 2005 Jun; 280(22):21313-20. PubMed ID: 15795229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine.
    Smith BC; Denu JM
    Biochemistry; 2006 Jan; 45(1):272-82. PubMed ID: 16388603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into intermediate steps in the Sir2 deacetylation reaction.
    Hawse WF; Hoff KG; Fatkins DG; Daines A; Zubkova OV; Schramm VL; Zheng W; Wolberger C
    Structure; 2008 Sep; 16(9):1368-77. PubMed ID: 18786399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of Sir2Tm bound to a propionylated peptide.
    Bheda P; Wang JT; Escalante-Semerena JC; Wolberger C
    Protein Sci; 2011 Jan; 20(1):131-9. PubMed ID: 21080423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2.
    Kowieski TM; Lee S; Denu JM
    J Biol Chem; 2008 Feb; 283(9):5317-26. PubMed ID: 18165239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and biochemical functions of SIRT6.
    Pan PW; Feldman JL; Devries MK; Dong A; Edwards AM; Denu JM
    J Biol Chem; 2011 Apr; 286(16):14575-87. PubMed ID: 21362626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair.
    Van Meter M; Mao Z; Gorbunova V; Seluanov A
    Aging (Albany NY); 2011 Sep; 3(9):829-35. PubMed ID: 21946623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions.
    Sauve AA; Celic I; Avalos J; Deng H; Boeke JD; Schramm VL
    Biochemistry; 2001 Dec; 40(51):15456-63. PubMed ID: 11747420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry.
    Sauve AA; Schramm VL
    Biochemistry; 2003 Aug; 42(31):9249-56. PubMed ID: 12899610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.
    Hoff KG; Avalos JL; Sens K; Wolberger C
    Structure; 2006 Aug; 14(8):1231-40. PubMed ID: 16905097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the yeast Hst2 protein deacetylase in ternary complex with 2'-O-acetyl ADP ribose and histone peptide.
    Zhao K; Chai X; Marmorstein R
    Structure; 2003 Nov; 11(11):1403-11. PubMed ID: 14604530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.