These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 19801779)

  • 81. Advanced nanoparticle generation and excitation by lasers in liquids.
    Barcikowski S; Compagnini G
    Phys Chem Chem Phys; 2013 Mar; 15(9):3022-6. PubMed ID: 23138867
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Formation of silver microbelt structures by laser irradiation of silver nanoparticles in ethanol.
    Zamiri R; Zakaria A; Husin MS; Wahab ZA; Nazarpour FK
    Int J Nanomedicine; 2011; 6():2221-4. PubMed ID: 22114485
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Nonequilibrium phases of nanoparticle Langmuir films.
    Vegso K; Siffalovic P; Majkova E; Jergel M; Benkovicova M; Kocsis T; Weis M; Luby S; Nygård K; Konovalov O
    Langmuir; 2012 Jul; 28(28):10409-14. PubMed ID: 22724517
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water.
    Wu H; Yang R; Song B; Han Q; Li J; Zhang Y; Fang Y; Tenne R; Wang C
    ACS Nano; 2011 Feb; 5(2):1276-81. PubMed ID: 21230008
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Ultra-pure, water-dispersed Au nanoparticles produced by femtosecond laser ablation and fragmentation.
    Kubiliūtė R; Maximova KA; Lajevardipour A; Yong J; Hartley JS; Mohsin AS; Blandin P; Chon JW; Sentis M; Stoddart PR; Kabashin A; Rotomskis R; Clayton AH; Juodkazis S
    Int J Nanomedicine; 2013; 8():2601-11. PubMed ID: 23888114
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution.
    Zamiri R; Zakaria A; Ahangar HA; Darroudi M; Zamiri G; Rizwan Z; Drummen GP
    Int J Nanomedicine; 2013; 8():233-44. PubMed ID: 23345971
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Dendrimer-capped nanoparticles prepared by picosecond laser ablation in liquid environment.
    Giorgetti E; Giusti A; Giammanco F; Marsili P; Laza S
    Molecules; 2009 Sep; 14(9):3731-53. PubMed ID: 19783955
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Laser-fabricated castor oil-capped silver nanoparticles.
    Zamiri R; Zakaria A; Abbastabar H; Darroudi M; Husin MS; Mahdi MA
    Int J Nanomedicine; 2011; 6():565-8. PubMed ID: 21698083
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles.
    Jossen R; Mueller R; Pratsinis SE; Watson M; Kamal Akhtar M
    Nanotechnology; 2005 Jul; 16(7):S609-17. PubMed ID: 21727483
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Preparation of silver nanoparticles in virgin coconut oil using laser ablation.
    Zamiri R; Azmi BZ; Sadrolhosseini AR; Ahangar HA; Zaidan AW; Mahdi MA
    Int J Nanomedicine; 2011 Jan; 6():71-5. PubMed ID: 21289983
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Size and size distribution balance the dispersion of colloidal CeO2 nanoparticles in organic solvents.
    Arita T; Yoo J; Ueda Y; Adschiri T
    Nanoscale; 2010 May; 2(5):689-93. PubMed ID: 20648311
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Fragmentation mechanism of the generation of colloidal copper(i) iodide nanoparticles by pulsed laser irradiation in liquids.
    Schaumberg CA; Wollgarten M; Rademann K
    Phys Chem Chem Phys; 2015 Jul; 17(27):17934-8. PubMed ID: 26094747
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Manipulation of the Size and Phase Composition of Yttrium Iron Garnet Nanoparticles by Pulsed Laser Post-Processing in Liquid.
    Hupfeld T; Stein F; Barcikowski S; Gökce B; Wiedwald U
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316700
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid.
    Intartaglia R; Bagga K; Genovese A; Athanassiou A; Cingolani R; Diaspro A; Brandi F
    Phys Chem Chem Phys; 2012 Nov; 14(44):15406-11. PubMed ID: 23059971
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Microwave assisted nanoparticle surface functionalization.
    Benyettou F; Guenin E; Lalatonne Y; Motte L
    Nanotechnology; 2011 Feb; 22(5):055102. PubMed ID: 21178254
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Self-assembly of polytetrafluoroethylene nanoparticle films using repulsive electrostatic interactions.
    Du C; Wang J; Chen D
    Langmuir; 2014 Feb; 30(4):976-83. PubMed ID: 24409997
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface.
    Fujii S; Kanaizuka K; Toyabe S; Kobayashi K; Muneyuki E; Haga MA
    Langmuir; 2011 Jul; 27(14):8605-10. PubMed ID: 21678969
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fabrication of paclitaxel nanocrystals by femtosecond laser ablation and fragmentation.
    Kenth S; Sylvestre JP; Fuhrmann K; Meunier M; Leroux JC
    J Pharm Sci; 2011 Mar; 100(3):1022-30. PubMed ID: 20809524
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Colloids as model systems for metals and alloys: a case study of crystallization.
    Herlach DM; Klassen I; Wette P; Holland-Moritz D
    J Phys Condens Matter; 2010 Apr; 22(15):153101. PubMed ID: 21389545
    [TBL] [Abstract][Full Text] [Related]  

  • 100. CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation.
    Setoura K; Okada Y; Hashimoto S
    Phys Chem Chem Phys; 2014 Dec; 16(48):26938-45. PubMed ID: 25377431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.