These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 198019)

  • 1. [Influence of phospholipids of different natures on the structure of ferricytochrome c].
    Selishcheva AA; Obraztsov VV; Kozlov IuP
    Biofizika; 1977; 22(4):716-9. PubMed ID: 198019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes of the phospholipid bilayer structure under the adsorption of ferricytochrome c on its surface].
    Obraztsov VV; Kobelev VS; Tenchov BI; Selishcheva AA; Sibel'dina LA
    Biokhimiia; 1976 Nov; 41(11):2015-20. PubMed ID: 191102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Influence of protein molecule conformation on the character of its interaction with a phospholipid bilayer].
    Obraztsov VV; Selishcheva AA; Kozlov IuP
    Biofizika; 1983; 28(3):412-7. PubMed ID: 6307396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Different types of interaction of oxidized and reduced cytochrome c with phospholipid vesicles].
    Selishcheva AA; Obraztsov VV; Kozlov IuP
    Biokhimiia; 1978 Nov; 43(11):2047-54. PubMed ID: 216426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polyanion on the acidic conformational transition of native and denatured ferricytochrome c. Circular dichroism study.
    Sedlák E; Antalík M
    Gen Physiol Biophys; 2002 Jun; 21(2):175-88. PubMed ID: 12236546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coulombic and noncoulombic effect of polyanions on cytochrome c structure.
    Sedlák E; Antalík M
    Biopolymers; 1998 Sep; 46(3):145-54. PubMed ID: 9699464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid beta-glucosidase: intrinsic fluorescence and conformational changes induced by phospholipids and saposin C.
    Qi X; Grabowski GA
    Biochemistry; 1998 Aug; 37(33):11544-54. PubMed ID: 9708990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-induced unfolding of cytochrome c at different methanol concentrations: electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure.
    Konermann L; Douglas DJ
    Biochemistry; 1997 Oct; 36(40):12296-302. PubMed ID: 9315869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles.
    Pinheiro TJ; Elöve GA; Watts A; Roder H
    Biochemistry; 1997 Oct; 36(42):13122-32. PubMed ID: 9335575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [IR-spectroscopic study of cytochrome C-phospholipid lipoprotein and proteolipid model membranes].
    Moshkov DA; Severina EP; Lazarev IuA; Boroviagin VL
    Biofizika; 1975; 20(2):233-7. PubMed ID: 167868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational substates of ferricytochrome c revealed by combined optical absorption and electronic circular dichroism spectroscopy at cryogenic temperature.
    Spilotros A; Levantino M; Cupane A
    Biophys Chem; 2010 Mar; 147(1-2):8-12. PubMed ID: 20022687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers.
    Johnson RP; Niggli V; Durrer P; Craig SW
    Biochemistry; 1998 Jul; 37(28):10211-22. PubMed ID: 9665728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-dependent conformational changes of ferricytochrome c induced by electrode surface microstructure.
    Jiang X; Qu X; Zhang L; Zhang Z; Jiang J; Wang E; Dong S
    Biophys Chem; 2004 Aug; 110(3):203-11. PubMed ID: 15228956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic and hydrophobic contributions to the folding mechanism of apocytochrome c driven by the interaction with lipid.
    Rankin SE; Watts A; Pinheiro TJ
    Biochemistry; 1998 Sep; 37(36):12588-95. PubMed ID: 9730831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength.
    Sinibaldi F; Fiorucci L; Patriarca A; Lauceri R; Ferri T; Coletta M; Santucci R
    Biochemistry; 2008 Jul; 47(26):6928-35. PubMed ID: 18540683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of the formation and activity of factor V-phospholipid complexes. I. Influence of phospholipid structure.
    Kandall CL; Shohet SB; Akinbami TK; Colman RW
    Thromb Diath Haemorrh; 1975 Sep; 34(1):256-70. PubMed ID: 1237944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H-n.m.r. evaluation of the ferricytochrome c-cardiolipin interaction. Effect of superoxide radicals.
    Soussi B; Bylund-Fellenius AC; Scherstén T; Angström J
    Biochem J; 1990 Jan; 265(1):227-32. PubMed ID: 2154181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. V92A mutation altered the folding propensity of chicken apocytochrome c and its interaction with phospholipids.
    Tong JC; Zhu LQ; Yang FY
    Biochemistry; 1996 Jul; 35(29):9460-8. PubMed ID: 8755725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of protein-lipid interactions on the structure of artificial vesicular].
    Obraztsov VV; Tenchov BG; Danilov VS
    Dokl Akad Nauk SSSR; 1976 Mar; 227(3):735-8. PubMed ID: 178489
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.