These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1980208)

  • 1. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine.
    Wilson BA; Reich KA; Weinstein BR; Collier RJ
    Biochemistry; 1990 Sep; 29(37):8643-51. PubMed ID: 1980208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR; Huang K; Wilson BA; Papini E; Covacci A; Collier RJ
    Biochemistry; 1994 May; 33(17):5155-61. PubMed ID: 8172890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity.
    Tweten RK; Barbieri JT; Collier RJ
    J Biol Chem; 1985 Sep; 260(19):10392-4. PubMed ID: 2863266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas aeruginosa exotoxin A: alterations of biological and biochemical properties resulting from mutation of glutamic acid 553 to aspartic acid.
    Douglas CM; Collier RJ
    Biochemistry; 1990 May; 29(21):5043-9. PubMed ID: 1974145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active-site mutations of diphtheria toxin: role of tyrosine-65 in NAD binding and ADP-ribosylation.
    Blanke SR; Huang K; Collier RJ
    Biochemistry; 1994 Dec; 33(51):15494-500. PubMed ID: 7803411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active-site mutations of diphtheria toxin. Tryptophan 50 is a major determinant of NAD affinity.
    Wilson BA; Blanke SR; Reich KA; Collier RJ
    J Biol Chem; 1994 Sep; 269(37):23296-301. PubMed ID: 8083236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diphtheria toxin NAD affinity and ADP ribosyltransferase activity are reduced at tryptophan 153 substitutions for alanine or phenylalanine.
    Zdanovskaia MV; Zdanovsky AG; Yankovsky NK
    Res Microbiol; 2000 Sep; 151(7):557-62. PubMed ID: 11037133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE; Eisenberg D
    Biochemistry; 1996 Jan; 35(4):1137-49. PubMed ID: 8573568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1-N6-Etheno-ADP-ribosylation of elongation factor-2 by diphtheria toxin.
    Giovane A; Balestrieri C; Quagliuolo L; Servillo L
    FEBS Lett; 1985 Oct; 191(2):191-4. PubMed ID: 2996930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoaffinity labeling of diphtheria toxin fragment A with 8-azidoadenosyl nicotinamide adenine dinucleotide.
    Lodaya R; Blanke SR; Collier RJ; Slama JT
    Biochemistry; 1999 Oct; 38(42):13877-86. PubMed ID: 10529233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin.
    Carroll SF; Collier RJ
    J Biol Chem; 1987 Jun; 262(18):8707-11. PubMed ID: 2885323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NAD-glycohydrolase activity of the pertussis toxin S1 subunit. Involvement of the catalytic HIS-35 residue.
    Antoine R; Locht C
    J Biol Chem; 1994 Mar; 269(9):6450-7. PubMed ID: 8119996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins.
    Marsischky GT; Wilson BA; Collier RJ
    J Biol Chem; 1995 Feb; 270(7):3247-54. PubMed ID: 7852410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a catalytic role of glutamic acid 129 in the NAD-glycohydrolase activity of the pertussis toxin S1 subunit.
    Antoine R; Tallett A; van Heyningen S; Locht C
    J Biol Chem; 1993 Nov; 268(32):24149-55. PubMed ID: 7901213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced ribosomal binding of eukaryotic elongation factor 2 following ADP-ribosylation. Difference in binding selectivity between polyribosomes and reconstituted monoribosomes.
    Nygård O; Nilsson L
    Biochim Biophys Acta; 1985 Feb; 824(2):152-62. PubMed ID: 3970930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD.
    Carroll SF; Collier RJ
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3307-11. PubMed ID: 6145155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a full-length, active-site mutant of diphtheria toxin.
    O'Keefe DO
    Arch Biochem Biophys; 1992 Aug; 296(2):678-84. PubMed ID: 1352960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A.
    Beattie BK; Prentice GA; Merrill AR
    Biochemistry; 1996 Dec; 35(48):15134-42. PubMed ID: 8952460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A.
    Lee H; Iglewski WJ
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2703-7. PubMed ID: 6326138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.