These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 19802278)
21. Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Hao R; Li L; Li Z; Zhou G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066603. PubMed ID: 15697522 [TBL] [Abstract][Full Text] [Related]
22. Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation. Zhang WQ; Sharping JE; White RT; Monro TM; Afshar V S Opt Express; 2010 Aug; 18(16):17294-305. PubMed ID: 20721117 [TBL] [Abstract][Full Text] [Related]
23. Discrete solitons in optical fiber systems with large pre-dispersion. Kumar S; Nakazawa M Opt Express; 2017 Aug; 25(17):19923-19945. PubMed ID: 29041679 [TBL] [Abstract][Full Text] [Related]
24. 80 kHz repetition rate high power fiber amplifier flat-top pulse pumped OPCPA based on BIB3O6. Rothhardt J; Hädrich S; Limpert J; Tünnermann A Opt Express; 2009 Feb; 17(4):2508-17. PubMed ID: 19219154 [TBL] [Abstract][Full Text] [Related]
25. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation. Tikan A; Billet C; El G; Tovbis A; Bertola M; Sylvestre T; Gustave F; Randoux S; Genty G; Suret P; Dudley JM Phys Rev Lett; 2017 Jul; 119(3):033901. PubMed ID: 28777604 [TBL] [Abstract][Full Text] [Related]
26. Dark and antidark solitons in the modified nonlinear Schrödinger equation accounting for the self-steepening effect. Li M; Tian B; Liu WJ; Zhang HQ; Wang P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046606. PubMed ID: 20481852 [TBL] [Abstract][Full Text] [Related]
27. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers. Mousavi SA; Mulvad HCH; Wheeler NV; Horak P; Hayes J; Chen Y; Bradley TD; Alam SU; Sandoghchi SR; Fokoua EN; Richardson DJ; Poletti F Opt Express; 2018 Apr; 26(7):8866-8882. PubMed ID: 29715848 [TBL] [Abstract][Full Text] [Related]
29. Ansatz-independent solution of a soliton in a strong dispersion-management system. Ferrando A; Zacares M; Fernandez De Cordoba P Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7320-9. PubMed ID: 11102092 [TBL] [Abstract][Full Text] [Related]
32. Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers. Hu X; Wang Y; Zhao W; Yang Z; Zhang W; Li C; Wang H Appl Opt; 2010 Sep; 49(26):4984-9. PubMed ID: 20830188 [TBL] [Abstract][Full Text] [Related]
33. High-quality sub-100-fs optical pulse generation by fiber-optic soliton compression of gain-switched distributed-feedback laser-diode pulses in conjunction with nonlinear optical fiber loops. Yatsu R; Taira K; Tsuchiya M Opt Lett; 1999 Aug; 24(16):1172-4. PubMed ID: 18073976 [TBL] [Abstract][Full Text] [Related]
34. Generation of pulse trains in nonlinear optical fibers through the generalized complex Ginzburg-Landau equation. Latchio Tiofack CG; Mohamadou A; Kofané TC; Moubissi AB Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066604. PubMed ID: 20365291 [TBL] [Abstract][Full Text] [Related]
35. Parametrically shaped femtosecond pulses in the nonlinear regime obtained by reverse propagation in an optical fiber. Pawłowska M; Patas A; Achazi G; Lindinger A Opt Lett; 2012 Jul; 37(13):2709-11. PubMed ID: 22743503 [TBL] [Abstract][Full Text] [Related]
36. All-optical pulse shaping for ultrawideband doublet pulses using nonlinear optical loop mirror with optical parametric amplification. Lee J; Chang YM; Lee JH Opt Lett; 2011 Nov; 36(21):4227-9. PubMed ID: 22048373 [TBL] [Abstract][Full Text] [Related]
37. Analytical study of pulse amplification in silicon Raman amplifiers. Rukhlenko ID; Premaratne M; Garanovich IL; Sukhorukov AA; Agrawal GP Opt Express; 2010 Aug; 18(17):18324-38. PubMed ID: 20721225 [TBL] [Abstract][Full Text] [Related]
38. Predicting nonlinear multi-pulse propagation in optical fibers via a lightweight convolutional neural network. Sui H; Zhu H; Jia H; Li Q; Ou M; Luo B; Zou X; Yan L Opt Lett; 2023 Sep; 48(18):4889-4892. PubMed ID: 37707929 [TBL] [Abstract][Full Text] [Related]
39. Radiative losses due to pulse interactions in birefringent nonlinear optical fibers. Smyth NF; Kath WL Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036614. PubMed ID: 11308795 [TBL] [Abstract][Full Text] [Related]