BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19802746)

  • 1. Maize ZmFDR3 localized in chloroplasts is involved in iron transport.
    Han J; Song X; Li P; Yang H; Yin L
    Sci China C Life Sci; 2009 Sep; 52(9):864-71. PubMed ID: 19802746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zea mays Fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots.
    Zhang XY; Zhang X; Zhang Q; Pan XX; Yan LC; Ma XJ; Zhao WZ; Qi XT; Yin LP
    Plant J; 2017 Apr; 90(1):147-163. PubMed ID: 28103409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.).
    Gu R; Duan F; An X; Zhang F; von Wirén N; Yuan L
    Plant Cell Physiol; 2013 Sep; 54(9):1515-24. PubMed ID: 23832511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide improves internal iron availability in plants.
    Graziano M; Beligni MV; Lamattina L
    Plant Physiol; 2002 Dec; 130(4):1852-9. PubMed ID: 12481068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AhNRAMP1 iron transporter is involved in iron acquisition in peanut.
    Xiong H; Kobayashi T; Kakei Y; Senoura T; Nakazono M; Takahashi H; Nakanishi H; Shen H; Duan P; Guo X; Nishizawa NK; Zuo Y
    J Exp Bot; 2012 Jul; 63(12):4437-46. PubMed ID: 22611231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco.
    Polanská L; Vicánková A; Nováková M; Malbeck J; Dobrev PI; Brzobohaty B; Vanková R; Machácková I
    J Exp Bot; 2007; 58(3):637-49. PubMed ID: 17175552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis.
    Schaaf G; Schikora A; Häberle J; Vert G; Ludewig U; Briat JF; Curie C; von Wirén N
    Plant Cell Physiol; 2005 May; 46(5):762-74. PubMed ID: 15753101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of a chloroplast-localized Mn
    Wang C; Ou D; Wang C; Lu X; Du J; Li J; Lai J; Zhang S; Yang C
    Plant Physiol Biochem; 2020 Oct; 155():396-405. PubMed ID: 32814276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5.
    Li S; Liu X; Zhou X; Li Y; Yang W; Chen R
    Plant Cell Physiol; 2019 Sep; 60(9):2077-2085. PubMed ID: 31165152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of a chimeric protein in chloroplasts is different in transgenic maize and tobacco plants.
    Van Breusegem F; Kushnir S; Slooten L; Bauw G; Botterman J; Van Montagu M; Inzé D
    Plant Mol Biol; 1998 Oct; 38(3):491-6. PubMed ID: 9747856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mediation of Zinc and Iron Accumulation in Maize by ZmIRT2, a Novel Iron-Regulated Transporter.
    Li S; Song Z; Liu X; Zhou X; Yang W; Chen J; Chen R
    Plant Cell Physiol; 2022 Apr; 63(4):521-534. PubMed ID: 35137187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil.
    Xiong H; Kakei Y; Kobayashi T; Guo X; Nakazono M; Takahashi H; Nakanishi H; Shen H; Zhang F; Nishizawa NK; Zuo Y
    Plant Cell Environ; 2013 Oct; 36(10):1888-902. PubMed ID: 23496756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.
    Chen J; Wu FH; Shang YT; Wang WH; Hu WJ; Simon M; Liu X; Shangguan ZP; Zheng HL
    J Exp Bot; 2015 Nov; 66(21):6605-22. PubMed ID: 26208645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of selection on candidate genes for regulation, mobilization, uptake, and transport of iron in maize.
    Benke A; Stich B
    Genome; 2011 Aug; 54(8):674-83. PubMed ID: 21848414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytological evidence of BSD2 functioning in both chloroplast division and dimorphic chloroplast formation in maize leaves.
    Li H; Bai M; Jiang X; Shen R; Wang H; Wang H; Wu H
    BMC Plant Biol; 2020 Jan; 20(1):17. PubMed ID: 31918680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize.
    Li S; Zhou X; Huang Y; Zhu L; Zhang S; Zhao Y; Guo J; Chen J; Chen R
    BMC Plant Biol; 2013 Aug; 13():114. PubMed ID: 23924433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter.
    Roberts LA; Pierson AJ; Panaviene Z; Walker EL
    Plant Physiol; 2004 May; 135(1):112-20. PubMed ID: 15107503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake.
    Curie C; Panaviene Z; Loulergue C; Dellaporta SL; Briat JF; Walker EL
    Nature; 2001 Jan; 409(6818):346-9. PubMed ID: 11201743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plasma membrane proteome of maize roots grown under low and high iron conditions.
    Hopff D; Wienkoop S; Lüthje S
    J Proteomics; 2013 Oct; 91():605-18. PubMed ID: 23353019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.