These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 198028)

  • 1. [Interrelationship between the generation of oxygen anion-radicals and the reduction of artificial acceptors and cytochrome P-450 by NADPH-cytochrome c reductase].
    Liakhovich VV; Mishin VM; Pokrovskii AG
    Biokhimiia; 1977 Jul; 42(7):1323-30. PubMed ID: 198028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the reduction of oxygen, artificial acceptors and cytochrome P-450 by NADPH--cytochrome c reductase.
    Lyakhovich V; Mishin V; Pokrovsky A
    Biochem J; 1977 Nov; 168(2):133-9. PubMed ID: 202259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP
    Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interaction of various acceptors with oxygen anion-radicals in liver microsomes].
    Mishin VM; Pokrovskiĭ AG; Liakhovich VV
    Biokhimiia; 1976 May; 41(5):763-7. PubMed ID: 828858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.
    Mishin V; Pokrovsky A; Lyakhovich VV
    Biochem J; 1976 Feb; 154(2):307-10. PubMed ID: 7236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cytochromes c and P-450 as terminal acceptors in a reconstituted system of mitochondrial hydroxylation].
    Armenian AG; Mardanian SS; Nalbandian RM
    Biokhimiia; 1982 May; 47(5):784-90. PubMed ID: 6284260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the mechanism of functional interaction between NADPH-cytochrome P-450 reductase and its redox partners.
    Tamburini PP; Schenkman JB
    Mol Pharmacol; 1986 Aug; 30(2):178-85. PubMed ID: 3016501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two sites of azo reduction in the monooxygenase system.
    Peterson FJ; Holtzman JL; Crankshaw D; Mason RP
    Mol Pharmacol; 1988 Oct; 34(4):597-603. PubMed ID: 2845254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsomes.
    Jeffery EH
    Mol Pharmacol; 1983 Mar; 23(2):467-73. PubMed ID: 6132332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of elementary steps in the cytochrome P-450 reaction sequence. VI. Model treatment of the NADPH-dependent first electron transfer reaction between cytochrome P-450 reductase and cytochrome P-450 LM2 in solution.
    Rohde K; Blanck J; Ruckpaul K
    Biomed Biochim Acta; 1983; 42(6):651-62. PubMed ID: 6416251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of hepatic microsomal NADPH cytochrome c reductase from rhesus monkey (Macaca mulatta).
    Ojha V; Kohli KK
    Biochem Mol Biol Int; 1994 Jan; 32(1):55-65. PubMed ID: 8012290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liver microsomal drug-metabolizing enzyme system: functional components and their properties.
    Lu AY
    Fed Proc; 1976 Nov; 35(13):2460-3. PubMed ID: 824157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies with purified components of the liver microsomal hydroxylation system: spectral intermediates in reaction of cytochrome P-450 with peroxy compounds.
    Coon MJ; Blake RC; Oprian DD; Ballou DP
    Acta Biol Med Ger; 1979; 38(2-3):449-58. PubMed ID: 42250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interaction of the Cu(Lys)2 complex with the NADPH-dependent microsomal electron transport system and microsomal membrane].
    Rumiantseva GV; Vaĭner LM
    Biokhimiia; 1982 Jun; 47(6):921-30. PubMed ID: 6810958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purified leukocyte cytochrome b558 incorporated into liposomes catalyzes a cytosolic factor dependent diaphorase activity.
    Li J; Guillory RJ
    Biochemistry; 1997 May; 36(18):5529-37. PubMed ID: 9154936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of carboxyl groups on NADPH-cytochrome P-450 reductase involved in binding of cytochromes c and P-450 LM2.
    Bernhardt R; Pommerening K; Ruckpaul K
    Biochem Int; 1987 May; 14(5):823-32. PubMed ID: 2841939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of 2-hydroxyestradiol-17beta on NADPH-dependent electron transfer in rat liver microsomes in vitro (author's transl)].
    Wollenberg P; Scheulen M; Bolt HM; Kappus H; Remmer H
    Hoppe Seylers Z Physiol Chem; 1976 Mar; 357(3):351-7. PubMed ID: 8367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of free radicals during the reductive metabolism of the nitroaromatic compound, nilutamide.
    Berson A; Wolf C; Berger V; Fau D; Chachaty C; Fromenty B; Pessayre D
    J Pharmacol Exp Ther; 1991 May; 257(2):714-9. PubMed ID: 1851835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.