These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19802819)

  • 1. Identifying protein stabilizing ligands using GroEL.
    Naik S; Haque I; Degner N; Kornilayev B; Bomhoff G; Hodges J; Khorassani AA; Katayama H; Morris J; Kelly J; Seed J; Fisher MT
    Biopolymers; 2010 Mar; 93(3):237-51. PubMed ID: 19802819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
    Motojima F; Yoshida M
    Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention of rhodanese aggregation by the chaperonin GroEL.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():111-5. PubMed ID: 11484477
    [No Abstract]   [Full Text] [Related]  

  • 5. The hydrophobic properties of GroEL: a review of ligand effects on the modulation of GroEL hydrophobic surfaces.
    Brazil BT; Horowitz PM
    Cell Stress Chaperones; 1999 Sep; 4(3):177-90. PubMed ID: 10547067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrillogenic propensity of the GroEL apical domain: a Janus-faced minichaperone.
    Chen J; Yagi H; Sormanni P; Vendruscolo M; Makabe K; Nakamura T; Goto Y; Kuwajima K
    FEBS Lett; 2012 Apr; 586(8):1120-7. PubMed ID: 22575645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance approaches for characterizing interactions between the bacterial chaperonin GroEL and unstructured proteins.
    Nishida N; Yagi-Utsumi M; Motojima F; Yoshida M; Shimada I; Kato K
    J Biosci Bioeng; 2013 Aug; 116(2):160-4. PubMed ID: 23567152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule spectroscopy of protein folding in a chaperonin cage.
    Hofmann H; Hillger F; Pfeil SH; Hoffmann A; Streich D; Haenni D; Nettels D; Lipman EA; Schuler B
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11793-8. PubMed ID: 20547872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperonin-assisted protein folding of the enzyme rhodanese by GroEL/GroES.
    Horowitz PM
    Methods Mol Biol; 1995; 40():361-8. PubMed ID: 7633531
    [No Abstract]   [Full Text] [Related]  

  • 11. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 12. Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL.
    Koike-Takeshita A; Mitsuoka K; Taguchi H
    J Biol Chem; 2014 Oct; 289(43):30005-11. PubMed ID: 25202010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSP60 possesses a GTPase activity and mediates protein folding with HSP10.
    Okamoto T; Yamamoto H; Kudo I; Matsumoto K; Odaka M; Grave E; Itoh H
    Sci Rep; 2017 Dec; 7(1):16931. PubMed ID: 29208924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of interactions with the GroEL cavity on protein folding rates.
    Sirur A; Best RB
    Biophys J; 2013 Mar; 104(5):1098-106. PubMed ID: 23473493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
    Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL
    Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of macromolecular crowding on chaperonin-mediated protein folding.
    Martin J; Hartl FU
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1107-12. PubMed ID: 9037014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Feb; 41(7):2421-8. PubMed ID: 11841236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding while bound to chaperones.
    Horowitz S; Koldewey P; Stull F; Bardwell JC
    Curr Opin Struct Biol; 2018 Feb; 48():1-5. PubMed ID: 28734135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excluded volume effects on the refolding and assembly of an oligomeric protein. GroEL, a case study.
    Galan A; Sot B; Llorca O; Carrascosa JL; Valpuesta JM; Muga A
    J Biol Chem; 2001 Jan; 276(2):957-64. PubMed ID: 11020386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.