These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19802852)

  • 61. Entrapment and measurement of a biologically functionalized microbead with a microwell electrode.
    Chang CY; Takahashi Y; Murata T; Shiku H; Chang HC; Matsue T
    Lab Chip; 2009 May; 9(9):1185-92. PubMed ID: 19370235
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Separation and simultaneous detection of anticancer drugs in a microfluidic device with an amperometric biosensor.
    Chandra P; Zaidi SA; Noh HB; Shim YB
    Biosens Bioelectron; 2011 Oct; 28(1):326-32. PubMed ID: 21820886
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system.
    Lee SJ; Anandan V; Zhang G
    Biosens Bioelectron; 2008 Feb; 23(7):1117-24. PubMed ID: 18077147
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Applications of whole-cell bacterial sensors in biotechnology and environmental science.
    Yagi K
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1251-8. PubMed ID: 17111136
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7.
    Yang L; Li Y; Erf GF
    Anal Chem; 2004 Feb; 76(4):1107-13. PubMed ID: 14961745
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation of screen-printed electrochemical immunosensors for estradiol, and their application in biological fluids.
    Pemberton RM; Hart JP
    Methods Mol Biol; 2009; 504():85-98. PubMed ID: 19159092
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development of inlaid electrodes for whole column electrochemical detection in HPLC.
    Seo JH; Leow PL; Cho SH; Lim HW; Kim JY; Patel BA; Park JG; O'Hare D
    Lab Chip; 2009 Aug; 9(15):2238-44. PubMed ID: 19606303
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
    Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P
    Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bead-based electrochemical immunoassay for bacteriophage MS2.
    Thomas JH; Kim SK; Hesketh PJ; Halsall HB; Heineman WR
    Anal Chem; 2004 May; 76(10):2700-7. PubMed ID: 15144178
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests.
    Morier P; Vollet C; Michel PE; Reymond F; Rossier JS
    Electrophoresis; 2004 Nov; 25(21-22):3761-8. PubMed ID: 15565685
    [TBL] [Abstract][Full Text] [Related]  

  • 73. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells.
    Zhang K; Zhao LB; Guo SS; Shi BX; Lam TL; Leung YC; Chen Y; Zhao XZ; Chan HL; Wang Y
    Biosens Bioelectron; 2010 Oct; 26(2):935-9. PubMed ID: 20638834
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Amperometric detection of Enterobacteriaceae in river water by measuring β-galactosidase activity at interdigitated microelectrode arrays.
    Laczka O; García-Aljaro C; del Campo FJ; Muñoz Pascual FX; Mas-Gordi J; Baldrich E
    Anal Chim Acta; 2010 Sep; 677(2):156-61. PubMed ID: 20837182
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On-demand patterning of protein matrixes inside a microfluidic device.
    Kaji H; Hashimoto M; Nishizawa M
    Anal Chem; 2006 Aug; 78(15):5469-73. PubMed ID: 16878884
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Developing a biosensor for estrogens in water samples: study of the real-time response of live cells of the estrogen-sensitive yeast strain RMY/ER-ERE using fluorescence microscopy.
    Wozei E; Hermanowicz SW; Holman HY
    Biosens Bioelectron; 2006 Feb; 21(8):1654-8. PubMed ID: 16143503
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A yeast assay based on the gilthead sea bream (teleost fish) estrogen receptor beta for monitoring estrogen mimics.
    Passos AL; Pinto PI; Power DM; Canario AV
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1529-37. PubMed ID: 19303142
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An FET-type charge sensor for highly sensitive detection of DNA sequence.
    Kim DS; Jeong YT; Park HJ; Shin JK; Choi P; Lee JH; Lim G
    Biosens Bioelectron; 2004 Jul; 20(1):69-74. PubMed ID: 15142578
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A microfluidic chip for electrochemical conversions in drug metabolism studies.
    Odijk M; Baumann A; Lohmann W; van den Brink FT; Olthuis W; Karst U; van den Berg A
    Lab Chip; 2009 Jun; 9(12):1687-93. PubMed ID: 19495451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.