These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1980293)

  • 1. The interaction of orally administered iron with levodopa and methyldopa therapy.
    Greene RJ; Hall AD; Hider RC
    J Pharm Pharmacol; 1990 Jul; 42(7):502-4. PubMed ID: 1980293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrous sulfate reduces methyldopa absorption: methyldopa: iron complex formation as a likely mechanism.
    Campbell NR; Campbell RR; Hasinoff BB
    Clin Invest Med; 1990 Dec; 13(6):329-32. PubMed ID: 2078911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferrous sulfate reduces levodopa bioavailability: chelation as a possible mechanism.
    Campbell NR; Hasinoff B
    Clin Pharmacol Ther; 1989 Mar; 45(3):220-5. PubMed ID: 2920496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex-formation and reduction of ferric iron by 2-oxo-4-thiomethylbutyric acid, and the production of hydroxyl radicals.
    Winston GW; Eibschutz OM; Strekas T; Cederbaum AI
    Biochem J; 1986 Apr; 235(2):521-9. PubMed ID: 3741403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexation of nicotinamide adenine dinucleotide with ferric and ferrous ions.
    Lvovich V; Scheeline A
    Arch Biochem Biophys; 1995 Jun; 320(1):1-13. PubMed ID: 7793967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of methyldopa absorption, metabolism, and blood pressure control caused by ferrous sulfate and ferrous gluconate.
    Campbell N; Paddock V; Sundaram R
    Clin Pharmacol Ther; 1988 Apr; 43(4):381-6. PubMed ID: 3356082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of citrinin on iron-redox cycle.
    Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG
    Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD; Davis TZ; Aust SD
    Arch Biochem Biophys; 2002 Jan; 397(2):360-9. PubMed ID: 11795895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous monitoring of levodopa, dopamine and their metabolites in skeletal muscle and subcutaneous tissue in different pharmacological conditions using microdialysis.
    Deleu D; Sarre S; Ebinger G; Michotte Y
    J Pharm Biomed Anal; 1993 Jul; 11(7):577-85. PubMed ID: 8399532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous biological ferrous iron oxidation in a submerged membrane bioreactor.
    Park D; Lee DS; Park JM
    Water Sci Technol; 2005; 51(6-7):59-68. PubMed ID: 16003962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free radical mechanism of oxidation of uroporphyrinogen in the presence of ferrous iron.
    Mukerji SK; Pimstone NR
    Arch Biochem Biophys; 1990 Sep; 281(2):177-84. PubMed ID: 2168153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of iron and the factors affecting off-color development of polyphenols.
    Mellican RI; Li J; Mehansho H; Nielsen SS
    J Agric Food Chem; 2003 Apr; 51(8):2304-16. PubMed ID: 12670175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of ferric and ferrous iron uptake by Bifidobacterium bifidum var. pennsylvanicus.
    Bezkorovainy A; Topouzian N; Miller-Catchpole R
    Clin Physiol Biochem; 1986; 4(2):150-8. PubMed ID: 3698473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of iron in the interaction of red blood cells with methylglyoxal. Modification of L-arginine by methylglyoxal is catalyzed by iron redox cycling.
    Wittmann I; Mazák I; Pótó L; Wagner Z; Wagner L; Vas T; Kovács T; Belágyi J; Nagy J
    Chem Biol Interact; 2001 Nov; 138(2):171-87. PubMed ID: 11672699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferrous ion strongly promotes the ring opening of the hydrolysis intermediates of the antioxidant cardioprotective agent dexrazoxane (ICRF-187).
    Buss JL; Hasinoff BB
    Arch Biochem Biophys; 1995 Feb; 317(1):121-7. PubMed ID: 7872773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between iron(III)-hydroxide polymaltose complex and commonly used drugs / simulations and in vitro studies.
    Burckhardt-Herold S; Klotz J; Funk F; Büchi R; Petrig-Schaffland J; Geisser P
    Arzneimittelforschung; 2007; 57(6A):360-9. PubMed ID: 17691585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of ferrous iron oxidation by batch and continuous cultures of thermoacidophilic Archaea at extremely low pH of 1.1-1.3.
    Gonzalez-Contreras P; Weijma J; Buisman CJ
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1295-303. PubMed ID: 21751006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sinemet-ferrous sulphate interaction in patients with Parkinson's disease.
    Campbell NR; Rankine D; Goodridge AE; Hasinoff BB; Kara M
    Br J Clin Pharmacol; 1990 Oct; 30(4):599-605. PubMed ID: 2291872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of oxygen binding to ferrous myeloperoxidase.
    Jantschko W; Furtmüller PG; Zederbauer M; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2004 Jun; 426(1):91-7. PubMed ID: 15130787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.