These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 1980293)
41. The requirement for ferric in the initiation of lipid peroxidation by chelated ferrous iron. Bucher JR; Tien M; Aust SD Biochem Biophys Res Commun; 1983 Mar; 111(3):777-84. PubMed ID: 6838585 [TBL] [Abstract][Full Text] [Related]
42. Clinical and chemical interactions between iron preparations and ciprofloxacin. Kara M; Hasinoff BB; McKay DW; Campbell NR Br J Clin Pharmacol; 1991 Mar; 31(3):257-61. PubMed ID: 2054264 [TBL] [Abstract][Full Text] [Related]
43. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor. Dave SR Bioresour Technol; 2008 Nov; 99(16):7803-6. PubMed ID: 18325759 [TBL] [Abstract][Full Text] [Related]
44. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. Xue X; Hanna K; Deng N J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810 [TBL] [Abstract][Full Text] [Related]
45. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. Charkoudian LK; Pham DM; Franz KJ J Am Chem Soc; 2006 Sep; 128(38):12424-5. PubMed ID: 16984186 [TBL] [Abstract][Full Text] [Related]
46. The importance of reductive mechanisms for intestinal uptake of iron from ferric maltol and ferric nitrilotriacetic acid (NTA). Barrand MA; Hider RC; Callingham BA J Pharm Pharmacol; 1990 Apr; 42(4):279-82. PubMed ID: 1974298 [TBL] [Abstract][Full Text] [Related]
47. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments. Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195 [TBL] [Abstract][Full Text] [Related]
49. Biological regeneration of ferric (Fe3+) solution during desulphurisation of gaseous streams: effect of nutrients and support material. Mulopo J; Schaefer L Water Sci Technol; 2015; 71(11):1672-8. PubMed ID: 26038932 [TBL] [Abstract][Full Text] [Related]
50. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions. Barker PD; Freund SM Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842 [TBL] [Abstract][Full Text] [Related]
51. Relevance of the ability of fructose 1,6-bis(phosphate) to sequester ferrous but not ferric ions. Bajić A; Zakrzewska J; Godjevac D; Andjus P; Jones DR; Spasić M; Spasojević I Carbohydr Res; 2011 Feb; 346(3):416-20. PubMed ID: 21232735 [TBL] [Abstract][Full Text] [Related]
52. Comparative single- and multiple-dose pharmacokinetics of levodopa and 3-O-methyldopa following a new dual-release and a conventional slow-release formulation of levodopa and benserazide in healthy volunteers. Crevoisier C; Monreal A; Metzger B; Nilsen T Eur Neurol; 2003; 49(1):39-44. PubMed ID: 12464717 [TBL] [Abstract][Full Text] [Related]
53. Influence of oxidation state on iron binding by Bacillus licheniformis capsule. McLean RJ; Beauchemin D; Beveridge TJ Appl Environ Microbiol; 1992 Jan; 58(1):405-8. PubMed ID: 1539987 [TBL] [Abstract][Full Text] [Related]
54. Reduction of mammalian ferritin. Watt GD; Frankel RB; Papaefthymiou GC Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3640-3. PubMed ID: 3858840 [TBL] [Abstract][Full Text] [Related]
55. Autoxidation of ferrous ion complexes: a method for the generation of hydroxyl radicals. Kachur AV; Tuttle SW; Biaglow JE Radiat Res; 1998 Oct; 150(4):475-82. PubMed ID: 9768863 [TBL] [Abstract][Full Text] [Related]
56. Retention of iron by rat intestine in vivo as affected by dietary fiber, ascorbate and citrate. Reinhold JG; Garcia Estrada J; Garcia PM; Garzon P J Nutr; 1986 Jun; 116(6):1007-17. PubMed ID: 3014090 [TBL] [Abstract][Full Text] [Related]
57. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678 [TBL] [Abstract][Full Text] [Related]
58. Stoichiometry of bacterial anaerobic oxidation of elemental sulfur by ferric iron. Kucera J; Zeman J; Mandl M; Cerna H Antonie Van Leeuwenhoek; 2012 May; 101(4):919-22. PubMed ID: 22249244 [TBL] [Abstract][Full Text] [Related]
59. Iron and citric acid: a fuzzy chemistry of ubiquitous biological relevance. Pierre JL; Gautier-Luneau I Biometals; 2000 Mar; 13(1):91-6. PubMed ID: 10831230 [TBL] [Abstract][Full Text] [Related]
60. Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2. Yacob T; Pandey S; Silverstein J; Rajaram H Environ Sci Technol; 2013 Aug; 47(15):8658-65. PubMed ID: 23777272 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]