These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 19803093)
1. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: field study. Zhuang P; Zou H; Shu W J Environ Sci (China); 2009; 21(6):849-53. PubMed ID: 19803093 [TBL] [Abstract][Full Text] [Related]
2. Bioaccumulation of cadmium, lead, and zinc in agriculture-based insect food chains. Butt A; Qurat-Ul-Ain ; Rehman K; Khan MX; Hesselberg T Environ Monit Assess; 2018 Nov; 190(12):698. PubMed ID: 30397822 [TBL] [Abstract][Full Text] [Related]
3. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Jung MC; Thornton I Sci Total Environ; 1997 May; 198(2):105-21. PubMed ID: 9167264 [TBL] [Abstract][Full Text] [Related]
4. Uptake and accumulation of potentially toxic metals (Zn, Cu and Pb) in soils and plants of Durgapur industrial belt. Kisku GC; Pandey P; Negi MP; Misra V J Environ Biol; 2011 Nov; 32(6):831-8. PubMed ID: 22471223 [TBL] [Abstract][Full Text] [Related]
5. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
6. Biotransfer of heavy metals along the soil-plant-edible insect-human food chain in Africa. Mwelwa S; Chungu D; Tailoka F; Beesigamukama D; Tanga C Sci Total Environ; 2023 Jul; 881():163150. PubMed ID: 37001659 [TBL] [Abstract][Full Text] [Related]
7. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779 [TBL] [Abstract][Full Text] [Related]
8. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain. Dar MI; Green ID; Naikoo MI; Khan FA; Ansari AA; Lone MI Sci Total Environ; 2017 Apr; 584-585():1221-1229. PubMed ID: 28153402 [TBL] [Abstract][Full Text] [Related]
9. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
10. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
11. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Shen ZJ; Xu C; Chen YS; Zhang Z Ecotoxicol Environ Saf; 2017 Sep; 143():19-27. PubMed ID: 28494313 [TBL] [Abstract][Full Text] [Related]
12. Uptake, transportation, and accumulation of C Liang C; Xiao H; Hu Z; Zhang X; Hu J Environ Pollut; 2018 Apr; 235():330-338. PubMed ID: 29304466 [TBL] [Abstract][Full Text] [Related]
13. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
14. Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L. Ares Á; Itouga M; Kato Y; Sakakibara H Bull Environ Contam Toxicol; 2018 Mar; 100(3):444-450. PubMed ID: 29243209 [TBL] [Abstract][Full Text] [Related]
15. The transfer and fate of Pb from sewage sludge amended soil in a multi-trophic food chain: a comparison with the labile elements Cd and Zn. Dar MI; Khan FA; Green ID; Naikoo MI Environ Sci Pollut Res Int; 2015 Oct; 22(20):16133-42. PubMed ID: 26070738 [TBL] [Abstract][Full Text] [Related]
16. Heavy metals in wetland plants and soil of Lake Taihu, China. Yang H; Shen Z; Zhu S; Wang W Environ Toxicol Chem; 2008 Jan; 27(1):38-42. PubMed ID: 18092866 [TBL] [Abstract][Full Text] [Related]
17. [Effect of rhizospheric environment of VA-mycorrhizal plants on forms of Cu, Zn, Pb and Cd in polluted soil]. Huang Y; Chen Y; Tao S Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):431-4. PubMed ID: 11767649 [TBL] [Abstract][Full Text] [Related]
18. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Zheng N; Wang Q; Zheng D Sci Total Environ; 2007 Sep; 383(1-3):81-9. PubMed ID: 17573096 [TBL] [Abstract][Full Text] [Related]
19. Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleífera and Helianthus annus grown in contaminated soils. Herrero EM; López-Gonzálvez A; Ruiz MA; Lucas-García JA; Barbas C Int J Phytoremediation; 2003; 5(2):153-67. PubMed ID: 12929497 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]