These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 19803162)

  • 1. [Difference in P utilization from organic phosphate between two rice genotypes and its relations with root-secreted acid phosphatase activity].
    Li YF; Luo AC; Wu LH; Wei XH
    Ying Yong Sheng Tai Xue Bao; 2009 May; 20(5):1072-8. PubMed ID: 19803162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice.
    Mehra P; Pandey BK; Giri J
    Plant Biotechnol J; 2017 Aug; 15(8):1054-1067. PubMed ID: 28116829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid phosphatase role in chickpea/maize intercropping.
    Li SM; Li L; Zhang FS; Tang C
    Ann Bot; 2004 Aug; 94(2):297-303. PubMed ID: 15238349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus.
    Lu L; Qiu W; Gao W; Tyerman SD; Shou H; Wang C
    Plant Cell Environ; 2016 Oct; 39(10):2247-59. PubMed ID: 27411391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis.
    Liu P; Cai Z; Chen Z; Mo X; Ding X; Liang C; Liu G; Tian J
    Plant Cell Environ; 2018 Dec; 41(12):2821-2834. PubMed ID: 30066375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Responses of rice genotypes with different silicon uptake efficiency to different silicon supply].
    Liu H; Zhang J; Du YX; Zhao QZ; Chen JR; Qiao JF
    Ying Yong Sheng Tai Xue Bao; 2009 Feb; 20(2):320-4. PubMed ID: 19459370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential responses of rice acid phosphatase activities and isoforms to phosphorus deprivation.
    Lim JH; Chung IM; Ryu SS; Park MR; Yun SJ
    J Biochem Mol Biol; 2003 Nov; 36(6):597-602. PubMed ID: 14659080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice.
    Tian J; Wang C; Zhang Q; He X; Whelan J; Shou H
    J Integr Plant Biol; 2012 Sep; 54(9):631-9. PubMed ID: 22805094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice.
    Gao W; Lu L; Qiu W; Wang C; Shou H
    Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [An approach to the screening index for low phosphorus tolerant rice genotype].
    Li Y; Luo A; Wang W; Yang C; Yang X
    Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):119-24. PubMed ID: 15852970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malate exudation by six aerobic rice genotypes varying in zinc uptake efficiency.
    Gao X; Zhang F; Hoffland E
    J Environ Qual; 2009; 38(6):2315-21. PubMed ID: 19875787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Screening methodology for rice (Oryza sativa) genotypes with high phosphorus use efficiency at their seedling stage].
    Guo Y; Lin W; Shi Q; Liang Y; Chen F; He H; Liang K
    Ying Yong Sheng Tai Xue Bao; 2002 Dec; 13(12):1587-91. PubMed ID: 12682961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of different P sources on phosphatase activity of mycorrhizosphere of red clover inoculated with AME].
    Song Y; Feng G; Li X
    Ying Yong Sheng Tai Xue Bao; 2003 May; 14(5):781-4. PubMed ID: 12924140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability.
    Unno Y; Okubo K; Wasaki J; Shinano T; Osaki M
    Environ Microbiol; 2005 Mar; 7(3):396-404. PubMed ID: 15683400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions.
    Zhang H; Huang Y; Ye X; Xu F
    Sci China Life Sci; 2010 Jun; 53(6):709-17. PubMed ID: 20602274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OsHAD1, a Haloacid Dehalogenase-Like APase, Enhances Phosphate Accumulation.
    Pandey BK; Mehra P; Verma L; Bhadouria J; Giri J
    Plant Physiol; 2017 Aug; 174(4):2316-2332. PubMed ID: 28637831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress.
    Lee JS; Wissuwa M; Zamora OB; Ismail AM
    J Plant Res; 2017 Nov; 130(6):1071-1077. PubMed ID: 28667406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.
    Dai X; Wang Y; Zhang WH
    J Exp Bot; 2016 Feb; 67(3):947-60. PubMed ID: 26663563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions.
    Sharma NC; Sahi SV
    Environ Sci Technol; 2011 Dec; 45(24):10531-7. PubMed ID: 22035414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus source alters host plant response to ectomycorrhizal diversity.
    Baxter JW; Dighton J
    Mycorrhiza; 2005 Nov; 15(7):513-23. PubMed ID: 15809869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.