These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 19803649)

  • 21. Motor imagery of walking following training in locomotor attention. The effect of "the tango lesson".
    Sacco K; Cauda F; Cerliani L; Mate D; Duca S; Geminiani GC
    Neuroimage; 2006 Sep; 32(3):1441-9. PubMed ID: 16861008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison.
    la Fougère C; Zwergal A; Rominger A; Förster S; Fesl G; Dieterich M; Brandt T; Strupp M; Bartenstein P; Jahn K
    Neuroimage; 2010 May; 50(4):1589-98. PubMed ID: 20034578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensorimotor alignment effects in the learning environment and in novel environments.
    Kelly JW; Avraamides MN; Loomis JM
    J Exp Psychol Learn Mem Cogn; 2007 Nov; 33(6):1092-107. PubMed ID: 17983315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor imagery of locomotion with an additional load: actual load experience does not affect differences between physical and mental durations.
    Munzert J; Blischke K; Krüger B
    Exp Brain Res; 2015 Mar; 233(3):809-16. PubMed ID: 25471367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of task-specific execution on accuracy of imagined aiming movements.
    Yoxon E; Tremblay L; Welsh TN
    Neurosci Lett; 2015 Jan; 585():72-6. PubMed ID: 25445380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allocentric and egocentric updating of spatial memories.
    Mou W; McNamara TP; Valiquette CM; Rump B
    J Exp Psychol Learn Mem Cogn; 2004 Jan; 30(1):142-57. PubMed ID: 14736303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaze and postural reorientation in the control of locomotor steering after stroke.
    Lamontagne A; Fung J
    Neurorehabil Neural Repair; 2009; 23(3):256-66. PubMed ID: 19060133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of action representation during adolescence.
    Choudhury S; Charman T; Bird V; Blakemore SJ
    Neuropsychologia; 2007 Jan; 45(2):255-62. PubMed ID: 16962147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor imagery influences the execution of repetitive finger opposition movements.
    Avanzino L; Giannini A; Tacchino A; Pelosin E; Ruggeri P; Bove M
    Neurosci Lett; 2009 Nov; 466(1):11-5. PubMed ID: 19770024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thinking outside the body: an advantage for spatial updating during imagined versus physical self-rotation.
    Wraga M
    J Exp Psychol Learn Mem Cogn; 2003 Sep; 29(5):993-1005. PubMed ID: 14516230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass.
    Papaxanthis C; Schieppati M; Gentili R; Pozzo T
    Exp Brain Res; 2002 Apr; 143(4):447-52. PubMed ID: 11914790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examining the equivalence between imagery and execution - Do imagined and executed movements code relative environmental features?
    Roberts JW; Welsh TN; Wakefield CJ
    Behav Brain Res; 2019 Sep; 370():111951. PubMed ID: 31108114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mentally represented motor actions in normal aging. I. Age effects on the temporal features of overt and covert execution of actions.
    Skoura X; Papaxanthis C; Vinter A; Pozzo T
    Behav Brain Res; 2005 Dec; 165(2):229-39. PubMed ID: 16165229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The kinematics of motor imagery: comparing the dynamics of real and virtual movements.
    Rodriguez M; Llanos C; Sabate M
    Neuropsychologia; 2009 Jan; 47(2):489-96. PubMed ID: 18983861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imagined self-motion differs from perceived self-motion: evidence from a novel continuous pointing method.
    Campos JL; Siegle JH; Mohler BJ; Bülthoff HH; Loomis JM
    PLoS One; 2009 Nov; 4(11):e7793. PubMed ID: 19907655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Threshold position control and the principle of minimal interaction in motor actions.
    Feldman AG; Goussev V; Sangole A; Levin MF
    Prog Brain Res; 2007; 165():267-81. PubMed ID: 17925252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Body- and environmental-stabilized processing of spatial knowledge.
    Mou W; Li X; McNamara TP
    J Exp Psychol Learn Mem Cogn; 2008 Mar; 34(2):415-21. PubMed ID: 18315416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Travel path conditions dictate the manner in which individuals avoid collisions.
    Cinelli ME; Patla AE
    Gait Posture; 2007 Jul; 26(2):186-93. PubMed ID: 17049236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deficits in executed and imagined aiming performance in brain-injured children.
    Caeyenberghs K; van Roon D; Swinnen SP; Smits-Engelsman BC
    Brain Cogn; 2009 Feb; 69(1):154-61. PubMed ID: 18707803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the limb kinematics and walking-distance estimation after shank elongation: evidence for a locomotor body schema?
    Dominici N; Daprati E; Nico D; Cappellini G; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2009 Mar; 101(3):1419-29. PubMed ID: 19091916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.