These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1980456)

  • 1. Increased reduced glutathione and glutathione S-transferase activity in chronic cephaloridine nephrotoxicity studies in the rat.
    Olivier MF; Dutertre-Catella H; Thevenin M; Martin C; Warnet JM; Claude JR
    Drug Chem Toxicol; 1990; 13(2-3):209-19. PubMed ID: 1980456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depletion of renal cortical glutathione and nephrotoxicity by cephaloridine, cephalothin and gentamicin in male Sprague-Dawley rats.
    Kuo CH; Hook JB
    Life Sci; 1982 Jul; 31(3):255-60. PubMed ID: 7121206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for determining urinary enzyme activities as nephrotoxic indicators in rats.
    Harauchi T; Yoshizaki T
    Jpn J Pharmacol; 1990 Oct; 54(2):205-15. PubMed ID: 1981795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cephaloridine nephrotoxicity is potentiated by selenium deficiency but not copper deficiency in rats.
    Kays SE; Crowell WA; Johnson MA
    J Nutr; 1992 Jun; 122(6):1232-41. PubMed ID: 1588439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucocorticoid amelioration of nephrotoxicity: a study of cephaloridine-methylprednisolone interaction in the rat.
    Harvey PW; Healing G; Major IR; McFarlane M; Purdy KA; Olatunde O; Garcia Conesa MT; Everett DJ; Cockburn A
    Hum Exp Toxicol; 1995 Jul; 14(7):554-61. PubMed ID: 7576815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of gentamicin-induced renal dysfunction and injury by the phenolic extract of soybean (Glycine max).
    Ekor M; Farombi EO; Emerole GO
    Fundam Clin Pharmacol; 2006 Jun; 20(3):263-71. PubMed ID: 16671961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid peroxidation: a possible mechanism of cephaloridine-induced nephrotoxicity.
    Kuo CH; Maita K; Sleight SD; Hook JB
    Toxicol Appl Pharmacol; 1983 Jan; 67(1):78-88. PubMed ID: 6845359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of potassium bromate-induced nephrotoxicity by coumarin (1,2-benzopyrone) in Wistar rats: chemoprevention against free radical-mediated renal oxidative stress and tumor promotion response.
    Khan N; Sharma S; Sultana S
    Redox Rep; 2004; 9(1):19-28. PubMed ID: 15035824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lack of coordination in the release of urinary lysosomal and brush border enzymes following renovascular surgery.
    Holmes RP; Craddock G; Espeland MA; Assimos DG; Dean RH
    Clin Chim Acta; 1989 Dec; 186(1):1-9. PubMed ID: 2575467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diazinon-induced oxidative stress and renal dysfunction in rats.
    Shah MD; Iqbal M
    Food Chem Toxicol; 2010 Dec; 48(12):3345-53. PubMed ID: 20828599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kidney and urine enzyme activity in experimental gentamicin nephrotoxicity in the Sprague-Dawley rat.
    Brown D; Brown J; Whiting PH
    Biochem Soc Trans; 1996 May; 24(2):317S. PubMed ID: 8736975
    [No Abstract]   [Full Text] [Related]  

  • 12. Assessment of renal toxicity by urinary enzymes in patients receiving chemotherapy with 8-methyl-8-acetylenic-putrescine.
    Carmichael J; Cantwell BM; Harris AL; Buamah PK; Hodson AW; Skillen AW
    Cancer Chemother Pharmacol; 1990; 26(1):65-6. PubMed ID: 1969773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effects of a platelet activating factor-antagonist 48740RP in cyclosporin-induced nephrotoxicity in the rat as assessed by renal glutathione metabolism parameters.
    Massicot F; Pham Huy C; Martin C; Thevenin M; Warnet JM; Claude JR
    Arch Toxicol Suppl; 1991; 14():213-7. PubMed ID: 1687197
    [No Abstract]   [Full Text] [Related]  

  • 14. Impact of cephaloridine on glutathione and related enzymes: comparison of in vivo and in vitro rat models.
    Moritz F; Marouillat S; Monteil C; Baudelot A; Fillastre JP; Bonmarchand G; Morin JP
    Arch Toxicol; 1995; 70(2):104-11. PubMed ID: 8773182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of cadmium on the hepatic and renal levels of reduced glutathione, the activity of glutathione S-transferase and gamma glutamyl transpeptidase.
    Karmakar R; Roy S; Chatterjee M
    J Environ Pathol Toxicol Oncol; 1999; 18(1):29-35. PubMed ID: 9951837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interorgan metabolism of glutathione.
    McIntyre TM; Curthoys NP
    Int J Biochem; 1980; 12(4):545-51. PubMed ID: 6107251
    [No Abstract]   [Full Text] [Related]  

  • 17. Methimazole protection of rats against chemically induced kidney damage in vivo.
    Sausen PJ; Elfarra AA; Cooley AJ
    J Pharmacol Exp Ther; 1992 Jan; 260(1):393-401. PubMed ID: 1731048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium lithospermate B ameliorates cephaloridine-induced renal injury.
    Yokozawa T; Dong E; Liu ZW; Shibata T; Hasegawa M; Watanabe H; Oura H
    Exp Toxicol Pathol; 1997 Dec; 49(5):337-41. PubMed ID: 9455678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione-degrading enzymes of microvillus membranes.
    Kozak EM; Tate SS
    J Biol Chem; 1982 Jun; 257(11):6322-7. PubMed ID: 6122685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of drug-metabolizing enzyme inducers on cephaloridine toxicity in Fischer 344 rats.
    Kuo CH; Hook JB
    Toxicology; 1982; 24(3-4):293-303. PubMed ID: 6100830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.