BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19804715)

  • 1. Actin-myosin viscoelastic flow in the keratocyte lamellipod.
    Rubinstein B; Fournier MF; Jacobson K; Verkhovsky AB; Mogilner A
    Biophys J; 2009 Oct; 97(7):1853-63. PubMed ID: 19804715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.
    Nikmaneshi MR; Firoozabadi B; Saidi MS
    J Biomech; 2018 Jan; 67():37-45. PubMed ID: 29217089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A free-boundary model of a motile cell explains turning behavior.
    Nickaeen M; Novak IL; Pulford S; Rumack A; Brandon J; Slepchenko BM; Mogilner A
    PLoS Comput Biol; 2017 Nov; 13(11):e1005862. PubMed ID: 29136638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamellipodial actin mechanically links myosin activity with adhesion-site formation.
    Giannone G; Dubin-Thaler BJ; Rossier O; Cai Y; Chaga O; Jiang G; Beaver W; Döbereiner HG; Freund Y; Borisy G; Sheetz MP
    Cell; 2007 Feb; 128(3):561-75. PubMed ID: 17289574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adhesion-dependent switch between mechanisms that determine motile cell shape.
    Barnhart EL; Lee KC; Keren K; Mogilner A; Theriot JA
    PLoS Biol; 2011 May; 9(5):e1001059. PubMed ID: 21559321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling actin flow, adhesion, and morphology in a computational cell motility model.
    Shao D; Levine H; Rappel WJ
    Proc Natl Acad Sci U S A; 2012 May; 109(18):6851-6. PubMed ID: 22493219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge.
    Craig EM; Stricker J; Gardel M; Mogilner A
    Phys Biol; 2015 May; 12(3):035002. PubMed ID: 25969948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.
    Nikmaneshi MR; Firoozabadi B; Saidi MS
    Bull Math Biol; 2015 Sep; 77(9):1813-32. PubMed ID: 26403420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane tension, myosin force, and actin turnover maintain actin treadmill in the nerve growth cone.
    Craig EM; Van Goor D; Forscher P; Mogilner A
    Biophys J; 2012 Apr; 102(7):1503-13. PubMed ID: 22500750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin and the coordination of protrusion, attachment and retraction in cell crawling.
    Small JV; Anderson K; Rottner K
    Biosci Rep; 1996 Oct; 16(5):351-68. PubMed ID: 8913526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MULTISCALE TWO-DIMENSIONAL MODELING OF A MOTILE SIMPLE-SHAPED CELL.
    Rubinstein B; Jacobson K; Mogilner A
    Multiscale Model Simul; 2005; 3(2):413-439. PubMed ID: 19116671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes.
    Barnhart E; Lee KC; Allen GM; Theriot JA; Mogilner A
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5045-50. PubMed ID: 25848042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility.
    Yam PT; Wilson CA; Ji L; Hebert B; Barnhart EL; Dye NA; Wiseman PW; Danuser G; Theriot JA
    J Cell Biol; 2007 Sep; 178(7):1207-21. PubMed ID: 17893245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanics of cell spreading within 3D-micropatterned environments.
    Ghibaudo M; Di Meglio JM; Hersen P; Ladoux B
    Lab Chip; 2011 Mar; 11(5):805-12. PubMed ID: 21132213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redundant mechanisms for stable cell locomotion revealed by minimal models.
    Wolgemuth CW; Stajic J; Mogilner A
    Biophys J; 2011 Aug; 101(3):545-53. PubMed ID: 21806922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin disassembly clock determines shape and speed of lamellipodial fragments.
    Ofer N; Mogilner A; Keren K
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20394-9. PubMed ID: 22159033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape and Area of Keratocytes Are Related to the Distribution and Magnitude of Their Traction Forces.
    Sonoda A; Okimura C; Iwadate Y
    Cell Struct Funct; 2016 Mar; 41(1):33-43. PubMed ID: 26754329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traction Forces Control Cell-Edge Dynamics and Mediate Distance Sensitivity during Cell Polarization.
    Messi Z; Bornert A; Raynaud F; Verkhovsky AB
    Curr Biol; 2020 May; 30(9):1762-1769.e5. PubMed ID: 32220324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin disassembly 'clock' and membrane tension determine cell shape and turning: a mathematical model.
    Mogilner A; Rubinstein B
    J Phys Condens Matter; 2010 May; 22(19):194118. PubMed ID: 20559462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Front-Rear Coupling in Neutrophil Chemotaxis by Dynamic Myosin II Localization.
    Tsai TY; Collins SR; Chan CK; Hadjitheodorou A; Lam PY; Lou SS; Yang HW; Jorgensen J; Ellett F; Irimia D; Davidson MW; Fischer RS; Huttenlocher A; Meyer T; Ferrell JE; Theriot JA
    Dev Cell; 2019 Apr; 49(2):189-205.e6. PubMed ID: 31014479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.