These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19804737)

  • 1. Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy.
    Yang YL; Leone LM; Kaufman LJ
    Biophys J; 2009 Oct; 97(7):2051-60. PubMed ID: 19804737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly.
    Yang YL; Kaufman LJ
    Biophys J; 2009 Feb; 96(4):1566-85. PubMed ID: 19217873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen I self-assembly: revealing the developing structures that generate turbidity.
    Zhu J; Kaufman LJ
    Biophys J; 2014 Apr; 106(8):1822-31. PubMed ID: 24739181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A blind spot in confocal reflection microscopy: the dependence of fiber brightness on fiber orientation in imaging biopolymer networks.
    Jawerth LM; Münster S; Vader DA; Fabry B; Weitz DA
    Biophys J; 2010 Feb; 98(3):L1-3. PubMed ID: 20141747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chondroitin sulfate and hyaluronic acid on structure, mechanical properties, and glioma invasion of collagen I gels.
    Yang YL; Sun C; Wilhelm ME; Fox LJ; Zhu J; Kaufman LJ
    Biomaterials; 2011 Nov; 32(31):7932-40. PubMed ID: 21820735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale Imaging of Collagen Gels with Focused Ion Beam Milling and Scanning Electron Microscopy.
    Reese SP; Farhang N; Poulson R; Parkman G; Weiss JA
    Biophys J; 2016 Oct; 111(8):1797-1804. PubMed ID: 27760365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and micromechanical characterization of type I collagen gels.
    Latinovic O; Hough LA; Daniel Ou-Yang H
    J Biomech; 2010 Feb; 43(3):500-5. PubMed ID: 19880123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanics of Type I Collagen.
    Varma S; Orgel JP; Schieber JD
    Biophys J; 2016 Jul; 111(1):50-6. PubMed ID: 27410733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Elastic Modulus of Collagen Type I Single Fiber.
    Dutov P; Antipova O; Varma S; Orgel JP; Schieber JD
    PLoS One; 2016; 11(1):e0145711. PubMed ID: 26800120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of high-density collagen fibril matrix gels by renaturation of triple-helix collagen from gelatin.
    Ohyabu Y; Yunoki S; Hatayama H; Teranishi Y
    Int J Biol Macromol; 2013 Nov; 62():296-303. PubMed ID: 24036066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.
    Baldwin SJ; Quigley AS; Clegg C; Kreplak L
    Biophys J; 2014 Oct; 107(8):1794-1801. PubMed ID: 25418160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore size variable type I collagen gels and their interaction with glioma cells.
    Yang YL; Motte S; Kaufman LJ
    Biomaterials; 2010 Jul; 31(21):5678-88. PubMed ID: 20430434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal Rheology Probes the Structure and Mechanics of Collagen through the Sol-Gel Transition.
    Tran-Ba KH; Lee DJ; Zhu J; Paeng K; Kaufman LJ
    Biophys J; 2017 Oct; 113(8):1882-1892. PubMed ID: 29045881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of cell and matrix mechanics using fluorescence excitation spectroscopy: Feasibility study in collagen gels containing fibroblasts.
    Padilla-Martinez JP; Wang R; Franco W
    Lasers Surg Med; 2016 Apr; 48(4):377-84. PubMed ID: 26990874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain stiffening in collagen I networks.
    Motte S; Kaufman LJ
    Biopolymers; 2013 Jan; 99(1):35-46. PubMed ID: 23097228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of collagen gels derived from rats of different ages.
    Wu CC; Ding SJ; Wang YH; Tang MJ; Chang HC
    J Biomater Sci Polym Ed; 2005; 16(10):1261-75. PubMed ID: 16268252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image-based Characterization of 3D Collagen Networks and the Effect of Embedded Cells.
    Olivares V; Cóndor M; Del Amo C; Asín J; Borau C; García-Aznar JM
    Microsc Microanal; 2019 Aug; 25(4):971-981. PubMed ID: 31210124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.
    Guilbert M; Roig B; Terryn C; Garnotel R; Jeannesson P; Sockalingum GD; Manfait M; Perraut F; Dinten JM; Koenig A; Piot O
    Oncotarget; 2016 Feb; 7(8):8546-55. PubMed ID: 26885896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical behavior of collagen-fibrin co-gels reflects transition from series to parallel interactions with increasing collagen content.
    Lai VK; Lake SP; Frey CR; Tranquillo RT; Barocas VH
    J Biomech Eng; 2012 Jan; 134(1):011004. PubMed ID: 22482659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.