These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 19804762)
21. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus. Chandrasekaran AR; Furuta Y; Crair MC J Physiol; 2009 Mar; 587(Pt 5):953-63. PubMed ID: 19153163 [TBL] [Abstract][Full Text] [Related]
22. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Brown A; Yates PA; Burrola P; Ortuño D; Vaidya A; Jessell TM; Pfaff SL; O'Leary DD; Lemke G Cell; 2000 Jul; 102(1):77-88. PubMed ID: 10929715 [TBL] [Abstract][Full Text] [Related]
23. Development of topographic order in the mammalian retinocollicular projection. Simon DK; O'Leary DD J Neurosci; 1992 Apr; 12(4):1212-32. PubMed ID: 1313491 [TBL] [Abstract][Full Text] [Related]
24. Altered map of visual space in the superior colliculus of mice lacking early retinal waves. Mrsic-Flogel TD; Hofer SB; Creutzfeldt C; Cloëz-Tayarani I; Changeux JP; Bonhoeffer T; Hübener M J Neurosci; 2005 Jul; 25(29):6921-8. PubMed ID: 16033902 [TBL] [Abstract][Full Text] [Related]
26. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types. Sweeney NT; James KN; Sales EC; Feldheim DA Dev Neurobiol; 2015 Jun; 75(6):584-93. PubMed ID: 25649160 [TBL] [Abstract][Full Text] [Related]
27. Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Rashid T; Upton AL; Blentic A; Ciossek T; Knöll B; Thompson ID; Drescher U Neuron; 2005 Jul; 47(1):57-69. PubMed ID: 15996548 [TBL] [Abstract][Full Text] [Related]
28. Developmental homeostasis of mouse retinocollicular synapses. Chandrasekaran AR; Shah RD; Crair MC J Neurosci; 2007 Feb; 27(7):1746-55. PubMed ID: 17301182 [TBL] [Abstract][Full Text] [Related]
29. Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells. Vo BQ; Bloom AJ; Culican SM Vis Neurosci; 2011 Mar; 28(2):175-81. PubMed ID: 21324225 [TBL] [Abstract][Full Text] [Related]
30. The retinal input to the superior colliculus in the cat. Hoffmann KP Invest Ophthalmol; 1972 Jun; 11(6):467-73. PubMed ID: 4338075 [No Abstract] [Full Text] [Related]
31. Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. Ruthazer ES; Cline HT J Neurobiol; 2004 Apr; 59(1):134-46. PubMed ID: 15007832 [TBL] [Abstract][Full Text] [Related]
32. Visual Function, Organization, and Development of the Mouse Superior Colliculus. Cang J; Savier E; Barchini J; Liu X Annu Rev Vis Sci; 2018 Sep; 4():239-262. PubMed ID: 29852095 [TBL] [Abstract][Full Text] [Related]
33. Topographic organization and convergence in corticotectal projections from areas 17, 18, and 19 in the cat. McIlwain JT J Neurophysiol; 1977 Mar; 40(2):189-98. PubMed ID: 845621 [TBL] [Abstract][Full Text] [Related]
34. ALCAM regulates mediolateral retinotopic mapping in the superior colliculus. Buhusi M; Demyanenko GP; Jannie KM; Dalal J; Darnell EP; Weiner JA; Maness PF J Neurosci; 2009 Dec; 29(50):15630-41. PubMed ID: 20016077 [TBL] [Abstract][Full Text] [Related]
35. Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus. Cang J; Wang L; Stryker MP; Feldheim DA J Neurosci; 2008 Oct; 28(43):11015-23. PubMed ID: 18945909 [TBL] [Abstract][Full Text] [Related]
36. Retinocollicular synaptogenesis and synaptic transmission during formation of the visual map in the superior colliculus of the wallaby (Macropus eugenii). Flett DL; Lim CH; Ho SM; Mark RF; Marotte LR Eur J Neurosci; 2006 Jun; 23(11):3043-50. PubMed ID: 16819993 [TBL] [Abstract][Full Text] [Related]
37. Developmental mechanisms of topographic map formation and alignment. Cang J; Feldheim DA Annu Rev Neurosci; 2013 Jul; 36():51-77. PubMed ID: 23642132 [TBL] [Abstract][Full Text] [Related]
38. Visual Cortex Gains Independence from Peripheral Drive before Eye Opening. Gribizis A; Ge X; Daigle TL; Ackman JB; Zeng H; Lee D; Crair MC Neuron; 2019 Nov; 104(4):711-723.e3. PubMed ID: 31561919 [TBL] [Abstract][Full Text] [Related]
39. Retinal origin of orientation but not direction selective maps in the superior colliculus. de Malmazet D; Kühn NK; Li C; Farrow K Curr Biol; 2024 Mar; 34(6):1222-1233.e7. PubMed ID: 38417446 [TBL] [Abstract][Full Text] [Related]
40. Target-independent ephrina/EphA-mediated axon-axon repulsion as a novel element in retinocollicular mapping. Suetterlin P; Drescher U Neuron; 2014 Nov; 84(4):740-52. PubMed ID: 25451192 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]