These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 19804799)

  • 1. Application of caffeine reveals input frequency-dependent determination of signal-traveling routes between primary and secondary visual cortices in rats.
    Yoshimura H; Sugai T; Honjo M; Kaneyama K; Segami N; Kato N
    Neurosci Res; 2010 Jan; 66(1):30-6. PubMed ID: 19804799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strengthening of non-NMDA receptor-dependent horizontal pathways between primary and lateral secondary visual cortices after NMDA receptor-dependent oscillatory neural activities.
    Yoshimura H; Sugai T; Segami N; Onoda N
    Brain Res; 2005 Mar; 1036(1-2):60-9. PubMed ID: 15725402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opening of shortcut circuits between visual and retrosplenial granular cortices of rats.
    Yoshimura H; Mashiyama Y; Kaneyama K; Nagao T; Segami N
    Neuroreport; 2007 Aug; 18(13):1315-8. PubMed ID: 17762704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMDA receptor-dependent oscillatory signal outputs from the retrosplenial cortex triggered by a non-NMDA receptor-dependent signal input from the visual cortex.
    Yoshimura H; Sugai T; Honjo M; Segami N; Onoda N
    Brain Res; 2005 May; 1045(1-2):12-21. PubMed ID: 15910758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between stimulation strength and onset time of signal traveling within the neocortical neural circuits under caffeine application.
    Yoshimura H; Honjo M; Sugai T; Kaneyama K; Segami N; Kato N
    Neurosci Res; 2011 Aug; 70(4):370-5. PubMed ID: 21621566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic AMP-dependent attenuation of oscillatory-activity-induced intercortical strengthening of horizontal pathways between insular and parietal cortices.
    Yoshimura H; Honjo M; Segami N; Kaneyama K; Sugai T; Mashiyama Y; Onoda N
    Brain Res; 2006 Jan; 1069(1):86-95. PubMed ID: 16386713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent emergence of oscillatory signal flow between the primary and secondary visual cortices in rat brain slices.
    Yoshimura H; Kato N; Sugai T; Segami N; Onoda N
    Brain Res; 2003 Nov; 990(1-2):172-81. PubMed ID: 14568342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeine-dependent stimulus-triggered oscillations in the CA3 region of hippocampal slices from rats chronically exposed to lead.
    He SJ; Xiao C; Wu ZY; Ruan DY
    Exp Neurol; 2004 Dec; 190(2):525-34. PubMed ID: 15530891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal evolution of excitation and inhibition in the rat barrel cortex investigated with multielectrode arrays.
    Wirth C; Lüscher HR
    J Neurophysiol; 2004 Apr; 91(4):1635-47. PubMed ID: 14627664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative strategy for driving voltage-oscillator in neocortex of rats.
    Fukuda T; Tominaga T; Tominaga Y; Kanayama H; Kato N; Yoshimura H
    Neurosci Res; 2023 Jun; 191():28-37. PubMed ID: 36642104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T; Onoda N
    Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal patterns of dorsal root-evoked network activity in the neonatal rat spinal cord: optical and intracellular recordings.
    Ziskind-Conhaim L; Redman S
    J Neurophysiol; 2005 Sep; 94(3):1952-61. PubMed ID: 15888530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro.
    Schiller Y; Bankirer Y
    J Neurophysiol; 2007 Mar; 97(3):1887-902. PubMed ID: 17151229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization in vivo of the NMDA receptor-mediated component of dentate granule cell population synaptic responses to perforant path input.
    Blanpied TA; Berger TW
    Hippocampus; 1992 Oct; 2(4):373-88. PubMed ID: 1364048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between non-NMDA and NMDA receptor activation during oscillatory wave propagation: Analyses of caffeine-induced oscillations in the visual cortex of rats.
    Yoshimura H; Sugai T; Kato N; Tominaga T; Tominaga Y; Hasegawa T; Yao C; Akamatsu T
    Neural Netw; 2016 Jul; 79():141-9. PubMed ID: 27136667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory bulb networks revealed by lateral olfactory tract stimulation in the in vitro isolated guinea-pig brain.
    Uva L; Strowbridge BW; de Curtis M
    Neuroscience; 2006 Oct; 142(2):567-77. PubMed ID: 16887275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-dependent emergence of a parieto-insular corticocortical signal flow in developing rats.
    Yoshimura H; Kato N; Honjo M; Sugai T; Segami N; Onoda N
    Brain Res Dev Brain Res; 2004 Mar; 149(1):45-51. PubMed ID: 15013628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical imaging of large-scale correlated wave activity in the developing rat CNS.
    Momose-Sato Y; Honda Y; Sasaki H; Sato K
    J Neurophysiol; 2005 Aug; 94(2):1606-22. PubMed ID: 15872071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection.
    Radenovic L; Selakovic V
    Brain Res Bull; 2005 Sep; 67(1-2):133-41. PubMed ID: 16140172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory activation of the genioglossus muscle involves both non-NMDA and NMDA glutamate receptors at the hypoglossal motor nucleus in vivo.
    Steenland HW; Liu H; Sood S; Liu X; Horner RL
    Neuroscience; 2006; 138(4):1407-24. PubMed ID: 16476523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.