BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19804869)

  • 1. Lipid production in Porphyridium cruentum grown under different culture conditions.
    Oh SH; Han JG; Kim Y; Ha JH; Kim SS; Jeong MH; Jeong HS; Kim NY; Cho JS; Yoon WB; Lee SY; Kang DH; Lee HY
    J Biosci Bioeng; 2009 Nov; 108(5):429-34. PubMed ID: 19804869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima.
    Oh SH; Kwon MC; Choi WY; Seo YC; Kim GB; Kang DH; Lee SY; Lee HY
    J Biosci Bioeng; 2010 Aug; 110(2):194-200. PubMed ID: 20547326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum.
    Lutzu GA; Zhang L; Zhang Z; Liu T
    Bioprocess Biosyst Eng; 2017 Jan; 40(1):73-83. PubMed ID: 27614620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell weight kinetics simulation in chemostat and batch culture of the rhodophyte Porphyridium cruentum.
    Muller-Feuga A; Le Guédes R; Le Déan L
    Biotechnol Bioeng; 2004 Dec; 88(6):759-66. PubMed ID: 15558597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell growth and lipid accumulation of a microalgal mutant
    Ma C; Zhang YB; Ho SH; Xing DF; Ren NQ; Liu BF
    Biotechnol Biofuels; 2017; 10():260. PubMed ID: 29151889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Unsaturated Fatty Acid Production from
    Kim SH; Lee UH; Lee SB; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2021 Mar; 31(3):456-463. PubMed ID: 33323671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of renewal regime for improvement of polysaccharides production from Porphyridium cruentum by uniform design.
    Sun L; Wang C; Ma C; Shi L
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):309-15. PubMed ID: 19434429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol.
    Munch G; Sestric R; Sparling R; Levin DB; Cicek N
    Bioresour Technol; 2015 Jun; 185():49-55. PubMed ID: 25747878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors.
    Li X; Xu H; Wu Q
    Biotechnol Bioeng; 2007 Nov; 98(4):764-71. PubMed ID: 17497732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of microalgal productivity using an adaptive, non-linear model based strategy.
    De la Hoz Siegler H; McCaffrey WC; Burrell RE; Ben-Zvi A
    Bioresour Technol; 2012 Jan; 104():537-46. PubMed ID: 22119433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids.
    Wang Y; Rischer H; Eriksen NT; Wiebe MG
    Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition.
    Kumar V; Muthuraj M; Palabhanvi B; Ghoshal AK; Das D
    Bioresour Technol; 2014 Oct; 170():115-124. PubMed ID: 25125198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production.
    Li T; Zheng Y; Yu L; Chen S
    Bioresour Technol; 2013 Mar; 131():60-7. PubMed ID: 23340103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids.
    Chen YH; Walker TH
    Bioresour Technol; 2012 Jun; 114():512-7. PubMed ID: 22497709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy conversion analysis of microalgal lipid production under different culture modes.
    Ren HY; Liu BF; Kong F; Zhao L; Xie GJ; Ren NQ
    Bioresour Technol; 2014 Aug; 166():625-9. PubMed ID: 24953728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda.
    Zhao G; Yu J; Jiang F; Zhang X; Tan T
    Bioresour Technol; 2012 Jun; 114():466-71. PubMed ID: 22465580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate.
    Béligon V; Poughon L; Christophe G; Lebert A; Larroche C; Fontanille P
    Bioresour Technol; 2015 Sep; 192():582-91. PubMed ID: 26093252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on batch elastase production by Bacillus sp. EL31410.
    He GQ; Xu Y; Chen QH; Ruan H; Li JJ
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1583-9. PubMed ID: 15547968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp.
    Wahidin S; Idris A; Shaleh SR
    Bioresour Technol; 2013 Feb; 129():7-11. PubMed ID: 23232218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum.
    Muller-Feuga A; Pruvost J; Le Guédes R; Le Déan L; Legentilhomme P; Legrand J
    Biotechnol Bioeng; 2003 Dec; 84(5):544-51. PubMed ID: 14574688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.